论文部分内容阅读
针对燃烧过程中变量之间的强非线性和耦合性,利用极限学习机(ELM)和改进的鲸鱼优化算法(WOA)进行混合建模。该方法利用Sin混沌自适应鲸鱼优化算法(CAWOA)对极限学习机的模型参数进行搜索和优化,以提高极限学习机的泛化性能。在CAWOA算法中,通过引入Sin混沌搜索策略和自适应惯性权值来改善WOA算法的全局优化性能。在此基础上,利用优化后的极限学习机对330MW煤粉锅炉的NO_x排放质量浓度进行预测,建立了CAWOA-ELM的NO_x排放量预测模型,并与同类算法模型进行对比研究。结果表明:该方法具有更好的泛化能力,能更加精确地预测NO_x排放量。