论文部分内容阅读
《基础课程改革指导纲要》把“以学生发展为本”作为新课程的基本理念,提出“改变过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、乐于研究、勤于动手”,“大力推进信息技术在教学过程中普遍应用,逐步实现教学内容的呈现方式、学生的学习方式,以及教学过程中师生互动方式的变革”。也就是说,基础课程改革,既要加强学生的基础性学力,又要提高学生的发展性学力和创造性学力,从而培养学生终身学习的愿望和能力。
数学实验教学是让学生通过自己动手操作,进行探究、发现、思考、分析、归纳等思维活动,最后获得概念、理解或解决问题的一种教学过程。在这过程中,教师通过提问引导和启发学生学习研究数学问题的方法。在数学实验教学中教师仍然处于主(要引)导的地位,而学生则处于主动学习的地位。随着现代技术,特别是CAI软件的普及,数学实验必将遍地开花。下面本人就“数学实验”在初中数学教学中谈几点自己的拙见。
一、通过数学实验,培养学生的创新思维能力
数学理念的抽象性通常都有某种“直观”的想法为背景。作为教师,就应该通过实验,反这种“直观”的背景显现出来,帮助学生抓住其本质,了解它的变形和发展及与其它问题的联系。
例如,对于三角形的“内心、外心、重心”的存在性,初中教材中未加证明,学生作图稍有不准确,就难以得出符合要求的结论。教师就可通过实验——抓纸活动,使学生领悟其本质。
让每一个学生准备一块三角形纸片,如图,过A作一折叠使AB落在AC上,得折痕AD,则AD平分∠BAC。同样方法得出折痕BE、CF。这样,学生就直观地发现:三角形三个角的一部分线交于一点,这点即为三角形的内心。相似地,可以折出三角形的外心、重心,进一步启发学生,还可折出三角形垂心.
通过折纸这些直观形象的实验来阐述抽象的数学内容,这在教材中是很多的,如“三角形内角和定理”、“三角形中位线定理”等等。通过这些实验操作,一方面使学生能更深入、更扎实地掌握数学知识;另一方面,也使他们在思维方式上不会犯浮夸和刻板的毛病,又能准确抓住事物的本质,提出符合实际的有创新的看法。
二、通过数学实验,突破课堂中的教学难点
对于教学中的一些疑难点,如不借助于一定的实验手段,就不能调动学生思维的积极性,也很难达到预定的教学目标。
例如,在初一数学“质量分数应用题”的教学时,由于学生缺乏自然科学中的有关知识,很难理解这点内容。这时,教师可借助实验的方法来解决这一问题。
先让每个学生准备一水杯和二份50g盐。教师在讲清质量分数的概念的基础上开始做实验。教师用量杯给每个学生倒200g水,然后让学生把50g盐加入水中,这样这杯盐水就有250g。那么盐水中盐的质量分数是多少?学生就自然地回答出: = 。让学生尝尝咸味,感受一下。然后再把剩下的50g盐加入盐水杯中,这时盐水的盐的质量分数双是多少?学生也能回答出 。再让学生尝尝咸味,学生发现盐水比原来咸多了(盐的质量分数增大)。
通过实验,学生获得了深刻的感性认识,然后教师通过对实验分析、概括、推理、判断,使学生的认识上升到一种理性的高度。这样处理,远比教师空洞的说教效果要好。
三、通过数学实验,激励学生在生活中应用数学
通过数学教学,帮助学生树立数学应用意识是素质的一项重要任务。这就要求教师必须创设一种实验环境,使学生能受到必要的数学应用的实际训练,否则强调应用意识就成为一句空话。
例如,学校每年要举行运动会,运动会场地可组织学生来画。跑道的线宽、道宽的尺寸一般都有规定的标准,當100m、200m、400m、800m等跑步项目终点位置确定时,其起点位置如何确定?相应的每跑道的前伸数怎样确定?标枪、铅球、铁饼场地怎样画?相应的角度怎样确定?这些应用到的数学知识虽简单,但在实际操作中却并不简单。通过教师的指导,使学生领悟到跑道上也 蕴含着丰富的数学知识。
这样,通过学生的文体参与,使学生亲自体验到了思维加工的过程,强化了学生“解决问题”的能力,激励学生多把数学知识应用于生活。
四、通过数学实验,发现几何问题解决的方法及规律
几何证明,学生常常感到无从下手,是几何学习中最困难的地方之一。事实上,几何证明的方法常常也是通过对图形的操作,变形、变换、添加辅助图形等多种多次的尝试而被发现的。发现了证明的方法后,顺便也就证明了前面的“发现(猜想)”的真确性,于是结论也就出来了。
下面是一例发现三角形内接矩形的面积变化规律的“数学实验”的做法。①出示图形:在△ABC中,P是BC边上的任意一点,以P为顶点作△ABC的内接矩形,使矩形的一边在BC上。②使点P在BC上运动,矩形面积随之变化。③设BP为x,矩形面积为y,建立x与y间的关系,让学生观察当x变化时,y的变化特点及其是否有最大值。④显示当P点运动时,对应的动点(x,y)的运动轨迹,让学生对第③问中的观察结果进行验证,最后完整显示抛物线。⑤改变△ABC的形状,研究△ABC的底边BC或BC边上的高变化时,对抛物线形状有什么影响。
在上述例子中,学生参与实验的过程实际上是在观察实验模拟过程中思考。当然在问题讨论环节中,部分学生仍可发挥创造性,提出自己新的“实验”设想,并上讲台进行实验操作演示或由教师择优实验。
五、通过数学实验,培养学生的唯物辩证观
数学是一门来源于实践的学科,其本身就充满了唯物论和辩证法。而数学实验为学生认识唯物论和辩证法提供了丰富的感性知识材料,学生每经过一次实验操作,其思维过程必然经历“感知——表象——抽象——反馈——再感知——丰富表象——发展思维——问题解决”这一螺旋上升的阶段。再者,学生“用数学”意识的培养,就是数学理论知识反作用于实践的有力体现。因此,在数学实验中培养学生的唯物辩证观,是完全可行的。此外,数学实验还可培养学生良好的观察能力、浓厚的学习兴趣及严谨的治学态度等。
我们坚信:每当我们从数学的本质特点和学生的认知特点出发,运用CAI这种工具和载体,通过数学实验这种教与学的方式,去致力于影响学生数学认知结构的意义建构,去帮助学生本质地理解数学,培养数学精神和发现、创造的能力时,我们就把握住了数学的时代性、科学性,我们就深入到了数学素质的核心。伴随着CAI技术的日新月异,数学实验的教学内容将逐渐增加,实验素材库将不断壮大,实验技术将更为先进与精巧,因而数学实验的教学思想和模式将具有更为广阔的天地、更为重大的作为。
数学实验教学是让学生通过自己动手操作,进行探究、发现、思考、分析、归纳等思维活动,最后获得概念、理解或解决问题的一种教学过程。在这过程中,教师通过提问引导和启发学生学习研究数学问题的方法。在数学实验教学中教师仍然处于主(要引)导的地位,而学生则处于主动学习的地位。随着现代技术,特别是CAI软件的普及,数学实验必将遍地开花。下面本人就“数学实验”在初中数学教学中谈几点自己的拙见。
一、通过数学实验,培养学生的创新思维能力
数学理念的抽象性通常都有某种“直观”的想法为背景。作为教师,就应该通过实验,反这种“直观”的背景显现出来,帮助学生抓住其本质,了解它的变形和发展及与其它问题的联系。
例如,对于三角形的“内心、外心、重心”的存在性,初中教材中未加证明,学生作图稍有不准确,就难以得出符合要求的结论。教师就可通过实验——抓纸活动,使学生领悟其本质。
让每一个学生准备一块三角形纸片,如图,过A作一折叠使AB落在AC上,得折痕AD,则AD平分∠BAC。同样方法得出折痕BE、CF。这样,学生就直观地发现:三角形三个角的一部分线交于一点,这点即为三角形的内心。相似地,可以折出三角形的外心、重心,进一步启发学生,还可折出三角形垂心.
通过折纸这些直观形象的实验来阐述抽象的数学内容,这在教材中是很多的,如“三角形内角和定理”、“三角形中位线定理”等等。通过这些实验操作,一方面使学生能更深入、更扎实地掌握数学知识;另一方面,也使他们在思维方式上不会犯浮夸和刻板的毛病,又能准确抓住事物的本质,提出符合实际的有创新的看法。
二、通过数学实验,突破课堂中的教学难点
对于教学中的一些疑难点,如不借助于一定的实验手段,就不能调动学生思维的积极性,也很难达到预定的教学目标。
例如,在初一数学“质量分数应用题”的教学时,由于学生缺乏自然科学中的有关知识,很难理解这点内容。这时,教师可借助实验的方法来解决这一问题。
先让每个学生准备一水杯和二份50g盐。教师在讲清质量分数的概念的基础上开始做实验。教师用量杯给每个学生倒200g水,然后让学生把50g盐加入水中,这样这杯盐水就有250g。那么盐水中盐的质量分数是多少?学生就自然地回答出: = 。让学生尝尝咸味,感受一下。然后再把剩下的50g盐加入盐水杯中,这时盐水的盐的质量分数双是多少?学生也能回答出 。再让学生尝尝咸味,学生发现盐水比原来咸多了(盐的质量分数增大)。
通过实验,学生获得了深刻的感性认识,然后教师通过对实验分析、概括、推理、判断,使学生的认识上升到一种理性的高度。这样处理,远比教师空洞的说教效果要好。
三、通过数学实验,激励学生在生活中应用数学
通过数学教学,帮助学生树立数学应用意识是素质的一项重要任务。这就要求教师必须创设一种实验环境,使学生能受到必要的数学应用的实际训练,否则强调应用意识就成为一句空话。
例如,学校每年要举行运动会,运动会场地可组织学生来画。跑道的线宽、道宽的尺寸一般都有规定的标准,當100m、200m、400m、800m等跑步项目终点位置确定时,其起点位置如何确定?相应的每跑道的前伸数怎样确定?标枪、铅球、铁饼场地怎样画?相应的角度怎样确定?这些应用到的数学知识虽简单,但在实际操作中却并不简单。通过教师的指导,使学生领悟到跑道上也 蕴含着丰富的数学知识。
这样,通过学生的文体参与,使学生亲自体验到了思维加工的过程,强化了学生“解决问题”的能力,激励学生多把数学知识应用于生活。
四、通过数学实验,发现几何问题解决的方法及规律
几何证明,学生常常感到无从下手,是几何学习中最困难的地方之一。事实上,几何证明的方法常常也是通过对图形的操作,变形、变换、添加辅助图形等多种多次的尝试而被发现的。发现了证明的方法后,顺便也就证明了前面的“发现(猜想)”的真确性,于是结论也就出来了。
下面是一例发现三角形内接矩形的面积变化规律的“数学实验”的做法。①出示图形:在△ABC中,P是BC边上的任意一点,以P为顶点作△ABC的内接矩形,使矩形的一边在BC上。②使点P在BC上运动,矩形面积随之变化。③设BP为x,矩形面积为y,建立x与y间的关系,让学生观察当x变化时,y的变化特点及其是否有最大值。④显示当P点运动时,对应的动点(x,y)的运动轨迹,让学生对第③问中的观察结果进行验证,最后完整显示抛物线。⑤改变△ABC的形状,研究△ABC的底边BC或BC边上的高变化时,对抛物线形状有什么影响。
在上述例子中,学生参与实验的过程实际上是在观察实验模拟过程中思考。当然在问题讨论环节中,部分学生仍可发挥创造性,提出自己新的“实验”设想,并上讲台进行实验操作演示或由教师择优实验。
五、通过数学实验,培养学生的唯物辩证观
数学是一门来源于实践的学科,其本身就充满了唯物论和辩证法。而数学实验为学生认识唯物论和辩证法提供了丰富的感性知识材料,学生每经过一次实验操作,其思维过程必然经历“感知——表象——抽象——反馈——再感知——丰富表象——发展思维——问题解决”这一螺旋上升的阶段。再者,学生“用数学”意识的培养,就是数学理论知识反作用于实践的有力体现。因此,在数学实验中培养学生的唯物辩证观,是完全可行的。此外,数学实验还可培养学生良好的观察能力、浓厚的学习兴趣及严谨的治学态度等。
我们坚信:每当我们从数学的本质特点和学生的认知特点出发,运用CAI这种工具和载体,通过数学实验这种教与学的方式,去致力于影响学生数学认知结构的意义建构,去帮助学生本质地理解数学,培养数学精神和发现、创造的能力时,我们就把握住了数学的时代性、科学性,我们就深入到了数学素质的核心。伴随着CAI技术的日新月异,数学实验的教学内容将逐渐增加,实验素材库将不断壮大,实验技术将更为先进与精巧,因而数学实验的教学思想和模式将具有更为广阔的天地、更为重大的作为。