论文部分内容阅读
针对背景差法背景重构的难点,提出了一种改进的像素灰度归类的背景重构算法。该方法假定"背景在图像序列中总是最常被观测到",根据帧间灰度差和累计帧差和划分灰度类,对划分的灰度区间执行合并操作,最后选择出现频率最大的灰度类作为该像素的背景值。仿真结果表明,该算法有效地避免了混合现象,当场景本身存在缓慢变化时也能很好地构建出背景,从而有利于后续的运动目标检测、识别和跟踪。