符号系统的2类跟踪及其应用

来源 :河北师范大学学报:自然科学版 | 被引量 : 0次 | 上传用户:a67987637
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
证明了符号动力系统具有Lipschitz跟踪性和极限跟踪性,作为其应用,借助拓扑共轭证明了Smale马蹄,二次映射在其双曲不变集上具有(相对C^1—小扰动一致的)极限跟踪性;借助Lipschitz共轭证明了线性的马蹄在其双曲不变集上具有Lipschitz跟踪性。
其他文献
λKv是λ重v点完全图.对于有限简单图G,所谓的图设计G-GDλ(v)是一个序偶(X,B),其中X是Kv的顶点集,而区组集B为λKv的全部边的一种分拆,其每个成员(区组)都是与G同构的子图.
在q(>1)一致光滑的实Banach空间E中,K是E的非空闭凸子集,T:K→K是广义LipschitzΦ-强伪压缩映射.给出了Ishikawa送代序列强收敛于T的不动点,所得结果扩展了该领域目前的相关
讨论了非线性多时滞中立型差分方程A(x(n) - p(n)x(n - r)) + q(n) mi=1(x(n -σi))αisgn x(n - σi) = 0的振动性.其中:p(n)≥0,q(n)≥0且不恒等于0;r,σi是非负整数,i=1,2,