论文部分内容阅读
According to the plasmon hybridization theory, the plasmon resonance characteristics of the gold nanocrescent/nanoring(NCNR) structure are systematically investigated by the finite element method. It is found that the extinction spectra of NCNR structure exhibit multiple plasmon resonance peaks, which could be attributed to the result of the plasmon couplings between the multipolar plasmon modes of nanocrescent and the dipolar, quadrupolar, hexapolar, octupolar,decapolar plasmon modes of nanoring. By changing the geometric parameters, the intense and separate multiple plasmon resonance peaks are obtained and can be tuned in a wide wavelength range. It is further found that the plasmon coupling induces giant multipole electric field enhancements around the tips of the nanocrescent. The tunable and intense multiple plasmon resonances of NCNR structure may provide effective applications in multiplex biological sensing.
According to the plasmon hybridization theory, the plasmon resonance characteristics of the gold nanocrescent / nanoring (NCNR) structures are systematically investigated by the finite element method. It is found that the extinction spectra of NCNR structure exhibits multiple plasmon resonance peaks, which could be attributed to the result of the plasmon couplings between the multipolar plasmon modes of nanocrescent and the dipolar, quadrupolar, hexapolar, octupolar, decapolar plasmon modes of nanoring. By changing the geometric parameters, the intense and separate multiple plasmon resonance peaks are obtained and can be tuned in a wide wavelength range. It is further found that the plasmon coupling induces giant multipole electric field enhancements around the tips of the nanocrescent. The tunable and intense multiple plasmon resonances of the NCNR structure may provide effective applications in multiplex biological sensing.