【摘 要】
:
使用传统的主题模型方法对医疗服务平台中的评论等短文本语料进行主题模型的情感分析时,会出现上下文依赖性差的问题。提出基于词嵌入的WLDA算法,使用Skip-Gram模型训练出的
论文部分内容阅读
使用传统的主题模型方法对医疗服务平台中的评论等短文本语料进行主题模型的情感分析时,会出现上下文依赖性差的问题。提出基于词嵌入的WLDA算法,使用Skip-Gram模型训练出的词w*替换传统的LDA模型中吉布斯采样算法里的词w[,同时引入参数λ,控制吉布斯采样时词的重采样的概率.实验结果证明,与同类的主题模型相比,该主题模型的主题一致性高.
其他文献
目标检测大量应用于监控系统的行人检测以及人脸识别,是当前深度学习的研究热点.监督学习利用人工标注大量数据集训练出针对特定场景的行人检测器.但是人工标注方法费时费力,本文针对监督学习需要人工标注数据集的缺点,研究了一种半自动标注行人的方法.针对静止的单目摄像机拍摄的监控视频,利用光流信息提供的初始前景可能性,以及跨越时间的视觉相似性来迭代地更新初始的前景可能性,分割出运动的行人,根据分割的前景对象,
针对输电线路三维可视化系统中大规模地形场景的渲染问题,提出一种基于静态LOD的虚拟地形绘制优化算法.建立输电线路廊道内地形高程数据的分块模型,将视角移动速度纳入细节层
针对传统Lukas-Kanade法(以下简称LK法)在板球系统中追踪小球难以捕捉圆心、追踪精度不高问题,提出一种基于hough变换的改进LK法.传统LK法确定角点主要是选取图中灰度梯度大的地方,角点总是在小球边缘而无法深入圆心,采用改进LK法选取角点是将图像的二维XY坐标系转换为三维ABR坐标系,通过累积数量和累积权重确定圆心.通过该点的图像的灰度梯度,进行追踪.结果显示改进的光流法对目标的捕捉要
基于深度学习和深度摄像机的人体动作识别方法,受其应用场景所限,均不能对视频中快变场景和静态图像中的人体动作进行识别.本文中定义了人体肢体角度空间,使用基于深度学习的人体骨骼识别框架的骨骼数据,构建8个4层BP回归神经网络.对人体的骨骼数据提取和预处理后,再对训练数据进行增维处理,通过回归神经网络进行拟合,实验和测试结果表明,该方法可以有效的对人体角度进行回归,为快变场景和静态图像中的人的动作识别提
针对基于多标签传播重叠社团挖掘算法COPRA因随机更新策略带来的不稳定性以及需要预先输入参数的局限性等问题,提出一种基于LeaderRank和节点相似性的多标签传播重叠社团挖掘
LPA中存在的随机策略,严重破坏算法的鲁棒性.随着大数据时代的来临,复杂网络的规模不断增大,从而造成算法的运算量增加,收敛速度减慢.针对这一问题,提出了一种新的改进标签传
针对现有后视镜的缺陷,采用双曲镜设计,将视镜分为主视野区和副视野区(主视野区接近平面镜,副视野区是凸面镜),在满足两个区域镜面平滑过渡的前提下建立曲面拟合模型,通过三角基线性拟合算法对复杂的曲面进行拟合,实现后视镜的曲面外形优化.该优化主要体现在可视区域变大,盲区减小,图像失真率小,在分界示意线过渡期间图像连贯且车身周围的图像失真率在3%以下.
路径规划问题是足球机器人研究的一个重点.以往的路径规划算法忽略了球员的移动对其周围区域产生的影响,导致实际所求得的最优安全路径并非那么安全.为了解决这个问题,提出了