论文部分内容阅读
根据多个模型相加可以提高整体预测精度和鲁棒性的思想,提出一种基于模糊C均值聚类算法的多T-S模糊神经网络模型对聚氯乙烯(polyvinylchlorid,PVC)聚合生产过程中的氯乙烯(vinyl chloride monomer,VCM)转化率和转化速率进行预测。首先采用主元分析来对软测量模型的辅助变量进行选择以降低模型维数,并提出和声搜索和最小二乘法相结合的混合优化算法来优化T-S模糊神经网络子模型的结构参数。仿真结果表明该模型能够显著提高PVC聚合过程中经济技术指标预测的精度和鲁棒性,可以满足