论文部分内容阅读
【摘 要】数控车削加工对前面的工序加工质量要求更高了,原因是数控加工的自动化程度很高,加工过程控制是由计算机控制的,缺少人工控制的灵活性,如果前面工序不能很好的保证,就会严重影响后续精加工的工件质量,本文就作者遇到的几个常见的加工问题进行分析,并提出了有效的解决方案。
【关键词】数控车床;车削加工;问题分析
1.大型薄壁件车削自激振动的抑制
切削颤振,是金属切削过程中刀具与工件之间产生的一种十分强烈的自激振动.由切削过程中所产生的动态周期性力激发而引起,并能维持其振动不衰减.在切削加工中,切削颤振不仅破坏了被加工零件的表面质量,而且还加速了刀具的磨损,严重时甚至使切削无法进。.本文以数控车床车削直径较大,壁又很薄的抛物线铝合金反光镜为实验内容(反光镜的表面粗糙度要求Ra≤0.8,如示意图1),通过实验的方法,总结出抑制振动的几种方法,有效的解决了加工中的振动问题。
试验中,采用的机床是日本大隈OKUMA数控车床,φ40的里孔刀,镗孔最初切削参数是吃刀深度0.5mm,转速初始值1000r/min,进给量0.05mm/r。实验结果是表面粗糙度极差,切削的过程中噪声极大,工件响如洪钟,切削几乎无法进行,经分析认为是工件本身的刚度不足,切削过程中产生自激振动造成的,通常抑制自激振动的方法可考虑从以下几个方面入手,一是调整切削参数,二是提高工艺系统本身的抗振性,三是使用消振装置等,在所有方法中,以第一种和第三种方法最为简单容易实现,于是采用了这两种方法进行了实验,均取得了较好的效果。
1.1调整切削参数抑制自激振动产生
通过相关理论可知,自激振动的产生与工艺系统的固有频率关系密切,如果工件的转速与工件的固有频率接近或成整数倍,在切削的过程中就容易产生自激振动,如果在切削的过程中能尽量使工件的转速尽量远离这个频率,就可以有效的减少切削中的自激振动,在其它参数不变的条件下,通过实验得出以下实验数据如表:
通过以上数据可以看出,当工件转速为1200r/mim时,工件的表面质量最差,随着转速的提高和下降表面质量逐步有所改善,但由于受到机床转速限制,转速无法进一步提高,在工件2200r/mim的情况下没有满足加工要求,另外进一步提高转速还要考虑刀具的寿命问题。当工件转速降至60r/mim时,工件的表面粗糙度完全符合了工件的要求。通过以上实验可以看出,通过调整工件的转速就可以有效的解决切削过程的自激振动问题。但这种方法有时会受到机床极限转速的限制和刀具寿命的限制,虽然可以通过降低工件的办法解决这一问题,但这一般法也存在一定的弊端,那就是加工效率明显降低,这在单件小批量生产中可以采用,在大批量生产中,会严重影响经济效益,不是最佳解决办法。
1.2增加阻尼减振法
虽然通过降低工件转速可有效的解决振动问题,但生产效率大幅度降低了,难以满足生产的要求。通过观察分析,加工过程中的振源为工件本身,是工件的壁太薄造成的,如何从工件本身入手解决振动问题是解决问题的关键,通过不断的实验,找到了解决问题的有效而简单的办法,通过在工件的背面缠绕布带或胶带可有效的消耗振动的能量,进而减少自激振动的发生。
2.车削时的断屑问题
数控车削是自动化加工,如果刀具的断屑性能太差,将严重妨碍加工的正常进行。为解决这一问题,首先应尽量提高刀具本身的断屑性能,其次应合理选择刀具的切削用量,避免产生妨碍加工正常进行的条带形切屑。数控车削中,最理想的切屑是长度为50~150mm,直径不大的螺卷状切屑,或宝塔形切屑,它们能有规律地沿一定方向排除,便于收集和清除。如果断屑不理想,必要时可在程序中安排暂停,强迫断屑:还可以使用断屑台来加强断屑效果。使用上压式的机夹可转位刀片时,可用压板同时将断屑台和刀片一起压紧:车内孔时,则可采用刀具前刀面朝下的切削方式改善排屑。
3.切槽的走刀路线问题
数控车削加工中的切削用量包括背吃刀量ap、主轴转速S(或切削速度υ)及进给速度F(或进给量f )。
切削用量的选择原则,合理选用切削用量对提高数控车床的加工质量至关重要。确定数控车床的切削用量时一定要根据机床说明书中规定的要求,以及刀具的耐用度去选择,也可结合实际经验采用类比法来确定。一般的选择原则是:粗车时,首先考虑在机床刚度允许的情况下选择尽可能大的背吃刀量ap;其次选择较大的进给量f;最后再根据刀具允许的寿命确定一个合适的切削速度υ。增大背吃刀量可减少走刀次数,提高加工效率,增大进给量有利于断屑。精车时,应着重考虑如何保证加工质量,并在此基础上尽量提高加工效率,因此宜选用较小的背吃刀量和进给量,尽可能地提高加工速度。主轴转速S(r/min )可根据切削速度υ(mm/min)由公式 S=υ1000/πD(D为工件或刀/具直径 mm)计算得出,也可以查表或根据实践经验确定。
4.经济型数控车床加工长轴常见问题及解决方案
4.1经济型数控车床精车径向尺寸分散的解决办法
在农机轴数控车削精加工的过程,发现同样的程序,同一台机床,加工出来的工件的尺寸很不稳定,误差很难控制在公差范围之内(0.02),通过对整个生产工艺分析和对前一道工序半成品的测量找到了问题的原因,是误差复映现象导致的结果,原因是上道工序加工采用的是普通机床车削的,公差要求比较宽(±0.2),而经济型数控车床的系统刚度较差,在数控车床上进行精加工的过程中,精加工余量的不同,刀具与工件之间的退让大小会发生很大的变化,工件余量大时退让的距离较大,余量小退让的距离就小。通过分析和实验有效的解决了这个问题,具体做法是把原来的一次走刀,变为两次走刀,第一次走刀的目的是使工件的余量均化,保证第二次走刀时余量接近(±0.04以内),从而保证精加工的精度。
4.2经济型数控车床加工长轴圆柱度超差的解决办法
在利用经济型数控车床加工长轴的过程中发现,加工出来的工件会出现一定的锥度,加工的余量越大,锥度越明显,往往会使工件的圆柱度超差,通过分析得知,产生这一现象的原因是机床主轴与机床尾座的刚度不同造成的,尾座的刚度比较弱,在加工的过程中,刀具距离尾座越近工件向后退让的距离越大,导致工件的尾端尺寸增大,造成工件的圆柱度误差。针对这種现象,可以通过减少多次走刀,减少精加工余量的办法解决;也可以通过安装中心架来提高工件的刚度解决,但这两种方法都会降低生产率。
为了不影响机床的生产率,笔者利用了数控机床本身的特点,提出了更加有效的解决办法,具体做法是:先试切几个轴,然后测出圆柱面的两端直径差,再把加工程序改成与试件锥度相反的加工锥面的程序就可解决问题。
4.3经济型数控车床加工长轴时靠近尾座
部分径向尺寸不稳定的解决方法在利用经济型数控车床加工长轴时,一般会采用一夹一顶或者双顶的方式进行装夹工件,在生产实践中发现,即使即使刀刃两侧圆角半径与工件槽底两侧的圆角半径一致,仍以中间先切一刀为好,因这一刀切下时,刀刃两侧的负荷是均等的,后面的两刀,一刀是左侧负荷重,一刀是右侧负荷重,刀具的磨损还是均匀的。机夹式的切槽刀不宜安排横走刀,只宜直切。
5.结语
数控机床作为一种高效率的设备,欲充分发挥其高性能、高精度和高自动化的特点,除了必须掌握机床的性能、特点及操作方法外,还应在编程前进行详细的工艺分析和确定合理的加工工艺,以得到最优的加工方案。
【关键词】数控车床;车削加工;问题分析
1.大型薄壁件车削自激振动的抑制
切削颤振,是金属切削过程中刀具与工件之间产生的一种十分强烈的自激振动.由切削过程中所产生的动态周期性力激发而引起,并能维持其振动不衰减.在切削加工中,切削颤振不仅破坏了被加工零件的表面质量,而且还加速了刀具的磨损,严重时甚至使切削无法进。.本文以数控车床车削直径较大,壁又很薄的抛物线铝合金反光镜为实验内容(反光镜的表面粗糙度要求Ra≤0.8,如示意图1),通过实验的方法,总结出抑制振动的几种方法,有效的解决了加工中的振动问题。
试验中,采用的机床是日本大隈OKUMA数控车床,φ40的里孔刀,镗孔最初切削参数是吃刀深度0.5mm,转速初始值1000r/min,进给量0.05mm/r。实验结果是表面粗糙度极差,切削的过程中噪声极大,工件响如洪钟,切削几乎无法进行,经分析认为是工件本身的刚度不足,切削过程中产生自激振动造成的,通常抑制自激振动的方法可考虑从以下几个方面入手,一是调整切削参数,二是提高工艺系统本身的抗振性,三是使用消振装置等,在所有方法中,以第一种和第三种方法最为简单容易实现,于是采用了这两种方法进行了实验,均取得了较好的效果。
1.1调整切削参数抑制自激振动产生
通过相关理论可知,自激振动的产生与工艺系统的固有频率关系密切,如果工件的转速与工件的固有频率接近或成整数倍,在切削的过程中就容易产生自激振动,如果在切削的过程中能尽量使工件的转速尽量远离这个频率,就可以有效的减少切削中的自激振动,在其它参数不变的条件下,通过实验得出以下实验数据如表:
通过以上数据可以看出,当工件转速为1200r/mim时,工件的表面质量最差,随着转速的提高和下降表面质量逐步有所改善,但由于受到机床转速限制,转速无法进一步提高,在工件2200r/mim的情况下没有满足加工要求,另外进一步提高转速还要考虑刀具的寿命问题。当工件转速降至60r/mim时,工件的表面粗糙度完全符合了工件的要求。通过以上实验可以看出,通过调整工件的转速就可以有效的解决切削过程的自激振动问题。但这种方法有时会受到机床极限转速的限制和刀具寿命的限制,虽然可以通过降低工件的办法解决这一问题,但这一般法也存在一定的弊端,那就是加工效率明显降低,这在单件小批量生产中可以采用,在大批量生产中,会严重影响经济效益,不是最佳解决办法。
1.2增加阻尼减振法
虽然通过降低工件转速可有效的解决振动问题,但生产效率大幅度降低了,难以满足生产的要求。通过观察分析,加工过程中的振源为工件本身,是工件的壁太薄造成的,如何从工件本身入手解决振动问题是解决问题的关键,通过不断的实验,找到了解决问题的有效而简单的办法,通过在工件的背面缠绕布带或胶带可有效的消耗振动的能量,进而减少自激振动的发生。
2.车削时的断屑问题
数控车削是自动化加工,如果刀具的断屑性能太差,将严重妨碍加工的正常进行。为解决这一问题,首先应尽量提高刀具本身的断屑性能,其次应合理选择刀具的切削用量,避免产生妨碍加工正常进行的条带形切屑。数控车削中,最理想的切屑是长度为50~150mm,直径不大的螺卷状切屑,或宝塔形切屑,它们能有规律地沿一定方向排除,便于收集和清除。如果断屑不理想,必要时可在程序中安排暂停,强迫断屑:还可以使用断屑台来加强断屑效果。使用上压式的机夹可转位刀片时,可用压板同时将断屑台和刀片一起压紧:车内孔时,则可采用刀具前刀面朝下的切削方式改善排屑。
3.切槽的走刀路线问题
数控车削加工中的切削用量包括背吃刀量ap、主轴转速S(或切削速度υ)及进给速度F(或进给量f )。
切削用量的选择原则,合理选用切削用量对提高数控车床的加工质量至关重要。确定数控车床的切削用量时一定要根据机床说明书中规定的要求,以及刀具的耐用度去选择,也可结合实际经验采用类比法来确定。一般的选择原则是:粗车时,首先考虑在机床刚度允许的情况下选择尽可能大的背吃刀量ap;其次选择较大的进给量f;最后再根据刀具允许的寿命确定一个合适的切削速度υ。增大背吃刀量可减少走刀次数,提高加工效率,增大进给量有利于断屑。精车时,应着重考虑如何保证加工质量,并在此基础上尽量提高加工效率,因此宜选用较小的背吃刀量和进给量,尽可能地提高加工速度。主轴转速S(r/min )可根据切削速度υ(mm/min)由公式 S=υ1000/πD(D为工件或刀/具直径 mm)计算得出,也可以查表或根据实践经验确定。
4.经济型数控车床加工长轴常见问题及解决方案
4.1经济型数控车床精车径向尺寸分散的解决办法
在农机轴数控车削精加工的过程,发现同样的程序,同一台机床,加工出来的工件的尺寸很不稳定,误差很难控制在公差范围之内(0.02),通过对整个生产工艺分析和对前一道工序半成品的测量找到了问题的原因,是误差复映现象导致的结果,原因是上道工序加工采用的是普通机床车削的,公差要求比较宽(±0.2),而经济型数控车床的系统刚度较差,在数控车床上进行精加工的过程中,精加工余量的不同,刀具与工件之间的退让大小会发生很大的变化,工件余量大时退让的距离较大,余量小退让的距离就小。通过分析和实验有效的解决了这个问题,具体做法是把原来的一次走刀,变为两次走刀,第一次走刀的目的是使工件的余量均化,保证第二次走刀时余量接近(±0.04以内),从而保证精加工的精度。
4.2经济型数控车床加工长轴圆柱度超差的解决办法
在利用经济型数控车床加工长轴的过程中发现,加工出来的工件会出现一定的锥度,加工的余量越大,锥度越明显,往往会使工件的圆柱度超差,通过分析得知,产生这一现象的原因是机床主轴与机床尾座的刚度不同造成的,尾座的刚度比较弱,在加工的过程中,刀具距离尾座越近工件向后退让的距离越大,导致工件的尾端尺寸增大,造成工件的圆柱度误差。针对这種现象,可以通过减少多次走刀,减少精加工余量的办法解决;也可以通过安装中心架来提高工件的刚度解决,但这两种方法都会降低生产率。
为了不影响机床的生产率,笔者利用了数控机床本身的特点,提出了更加有效的解决办法,具体做法是:先试切几个轴,然后测出圆柱面的两端直径差,再把加工程序改成与试件锥度相反的加工锥面的程序就可解决问题。
4.3经济型数控车床加工长轴时靠近尾座
部分径向尺寸不稳定的解决方法在利用经济型数控车床加工长轴时,一般会采用一夹一顶或者双顶的方式进行装夹工件,在生产实践中发现,即使即使刀刃两侧圆角半径与工件槽底两侧的圆角半径一致,仍以中间先切一刀为好,因这一刀切下时,刀刃两侧的负荷是均等的,后面的两刀,一刀是左侧负荷重,一刀是右侧负荷重,刀具的磨损还是均匀的。机夹式的切槽刀不宜安排横走刀,只宜直切。
5.结语
数控机床作为一种高效率的设备,欲充分发挥其高性能、高精度和高自动化的特点,除了必须掌握机床的性能、特点及操作方法外,还应在编程前进行详细的工艺分析和确定合理的加工工艺,以得到最优的加工方案。