论文部分内容阅读
旋转机械故障诊断研究中,采用BP神经网络容易陷入局部极小点而无法得到全局最优解,导致对耦合碰摩故障分类识别率不高的问题。研究了经验模态分解方法和BP—AdaBoost方法,结合二者优点,提出了一个故障识别的新方法,首先为了去除背景信号和噪声信号,选用经验模态分解方法来分解转子的振动信号,得到转子系统碰摩信号的主要故障特征,然后用BP—AdaBoost模型对3种不同工况进行识别。基于实验数据的分析表明方法的识别率要优于BP神经网络。