论文部分内容阅读
摘 要:数学是一门比较抽象而且实践性比较强的学科,培养学生的思维能力,不仅仅能够有效的提高教学的质量,更能够促进学生的综合发展、全面发展。本文简单的探讨在初中数学教学中培养学生思维能力的措施。
关键词:思维能力; 问题教学; 逻辑思维; 应用能力
数学学习离不开思维,数学教学最重要的是培养学生思维能力。初中数学教学大纲中明确指出,思维能力主要是指:会观察、实验、比较、猜想、分析、综合、抽象和概括;会用归纳、演绎和类比进行推理;会合乎逻辑地、准确的阐述自己的思想和观点;能运用数学概念、思想方和方法,辨明数学关系,形成良好地思维品质。那么,在教学中如何培养学生数学思维能力?就这一问题下面简单谈谈我的几点看法。
1.运用问题教学激发学生思维
问题是思维的起点,是学生进行探索的动力。在教学中教师要精心设计课堂提问,为学生制造悬念,使学生产生强烈的好奇心和浓厚的求知欲,激发学生学习的积极性,以促进学生积极思维,有效培养学生的思维能力。
如在教学“圆的认识”这一节内容时,我提出问题,有以下几种图形:圆形、正方形、菱形、椭圆,让学生为自行车选一个车轮的形状。学生都知道自行车等车辆的车轮都是圆的,但是为什么是圆的却不明白。这样的问题可以使学生带着问题积极地参与到此节的学习中来,同时促进学生积极动脑,主动思维,充分调动了学生数学思维的积极性,可以有效培养学生的数学思维。
又如在学习了三角形内角是180度后,我提出这样的问题:将此三角形一分为二,那么这个三角形内的两个小三角形的内角和为180÷2=90度。此时部分同学赞成,部分同学认为不对,分割后的两个三角形的内角和也应该是180度,这样学生就产生了疑问,学生会带着疑问展开探索,不仅帮助学生巩固知识,加深理解,为今后的学习奠定基础,更为重要的是促进学生带着问题积极思考,开动脑筋,利于学生数学思维能力的形成。
2.利用认知冲突促进学生思维
当呈现给学生的问题有几种可能性时,他们往往产生认知冲突,不知选择哪个,这样引起的最大限度的心理“不平衡”,能激发学生的求知欲和好奇心。而求知欲和好奇心又是激发思维活动的一种内在情感力量,它对思维具有激活和指向作用,冲突的解除过程就是认知结构自我调节和完善的过程,是理解深化的过程。
我在考查学生对不等式的理解程度时,创设了下面的教学情境。师:请解不等式a-2﹥5。生:a-2+2﹥5+2,即:a﹥7。师:为什么要在不等式两边加2呢?生:在不等式两边同时1,或加10,或加100,总之加上同样的数,不等号都不改变。师:如果在较大的一端加2,同时在较小的一端加比原来小的数(如加1),那么不等号的方向也不改变,例如:a-2+2﹥5+1,即a﹥6,而这与上面的算法结果就不同了,这是怎么回事?在这个教学情境中,学生心理上产生了如下三种认知冲突:(1)就结果来说,a﹥7和a﹥6,哪个正确?(2)就方法来说,不等式两边同时加一个数与不等式较大一端加大数,较小一端加小数哪个正确?(3)就两种解法来说,“a﹥b→a+x﹥b+c”“a﹥b,c﹥d→a+c﹥b+d”哪个正确?学生思维活跃,课堂上呈现出情绪激昂、主动思维的气氛,最后,在教师诱导下,以排除认识冲突为契机,加深了理解,弄清了两者的区别和联系。
3.运用逻辑思维解决数学教学中的问题
逻辑是创造性思维中最富有创造性特征的重要组成部分,所以逻辑思维能力在解题中有着不可低估的作用。我们知道,中学数学教学内容从总体上可以分为两个层次:一个称为表层知识,另一个称为深层知识。表层知识包括概念、性质、法则、公式等数学的基本知识和基本技能,深层知识主要指数学思想和数学方法。数学教学中,应当时刻向学生提出各项能力提高的要求,另外还要使学生掌握数学的解题要领和解题方法。
例如,每次上课时都可以选择一些数学习题,让学生计时演算;结合教学内容教给学生一定的速算要领和方法;常用的数字,如20以内自然数的平方数、10以内自然数的立方数、特殊角的三角函数值、无理数、π、е、lg2、lg3的近似值都要做到“一口清”;常用的数学公式如平方和、立方和、一元二次方程的有关公式等等,都要做到应用自如。实际上,速算要领的掌握和熟记一些数据、公式等,在思维活动中是一个逻辑思维不断加强的过程,同时也训练了学生的数学技能,而数学技能的获得就成为一种数学思维能力了。
4.让学生勤动脑,多动手,培养学生数学思维
新实施的初中数学新课程标准明确指出:“要注重学生自主学习能动性和主动性的培养,特别是要激发学生解决问题的能力,提升学生的能动探究水平和能力。”现代教育理论下更加提倡学生的自主学习,更加关注学生获取知识的过程与数学思维能力的培养。而在传统教学中教师是课堂的主宰者与操纵者,学生只是被动地接收知识,毫无主观性、主体性与互动性。在这样的教学氛围中,学生的学习兴趣低下,很难激起对学习的激情,其教学效果收效甚微。要改变这一现状,就要把课堂交给学生,将学习的主动权还给学生,让学生真正成为课堂的主体、学生的主人,充分发挥学生的主观能动性,为学生提供更多的自主学习与主动探索的时间与空间,让学生多动手多操作,让学生在动手实践中积极探索、主动思维,使学生的学习不再是简单记忆、单纯模仿,而是知识的主动获取与构建的过程,让学生亲历知识的形成过程,这样的学习才是有效的学习,才能培养学生的数学思维能力。
5.适当组织课外实践活动,提高学生应用能力
数学产生于客观世界,反过来又为客观世界服务;让学生将所学到的数学理论知识用课外活动为实践和应用,既能提高他们的学习兴趣,又能巩固所学的理论知识,提高他们的综合素质。
如我在教学“相似形”时,曾组织了两次课外活动,一是利用成比例线段,就地测量操场上的旗杆和树木的高。二是利用相似三角形或全等三角形测量不能直接到达的两点间的距离。这些活动操作简单,学生易于接受,又极大地培养了他们的思维兴趣,巩固发展了他们的的数学知识。
总之,数学教师在教学过程中,培养学生良好的思维品质,是我们永远值得探讨的问题。只有在教学中不断总结,不断探索研究,方能取得成效。这样,我们数学教师才会在新课改中有所探索,有所发现,有所建树,有所收获。
关键词:思维能力; 问题教学; 逻辑思维; 应用能力
数学学习离不开思维,数学教学最重要的是培养学生思维能力。初中数学教学大纲中明确指出,思维能力主要是指:会观察、实验、比较、猜想、分析、综合、抽象和概括;会用归纳、演绎和类比进行推理;会合乎逻辑地、准确的阐述自己的思想和观点;能运用数学概念、思想方和方法,辨明数学关系,形成良好地思维品质。那么,在教学中如何培养学生数学思维能力?就这一问题下面简单谈谈我的几点看法。
1.运用问题教学激发学生思维
问题是思维的起点,是学生进行探索的动力。在教学中教师要精心设计课堂提问,为学生制造悬念,使学生产生强烈的好奇心和浓厚的求知欲,激发学生学习的积极性,以促进学生积极思维,有效培养学生的思维能力。
如在教学“圆的认识”这一节内容时,我提出问题,有以下几种图形:圆形、正方形、菱形、椭圆,让学生为自行车选一个车轮的形状。学生都知道自行车等车辆的车轮都是圆的,但是为什么是圆的却不明白。这样的问题可以使学生带着问题积极地参与到此节的学习中来,同时促进学生积极动脑,主动思维,充分调动了学生数学思维的积极性,可以有效培养学生的数学思维。
又如在学习了三角形内角是180度后,我提出这样的问题:将此三角形一分为二,那么这个三角形内的两个小三角形的内角和为180÷2=90度。此时部分同学赞成,部分同学认为不对,分割后的两个三角形的内角和也应该是180度,这样学生就产生了疑问,学生会带着疑问展开探索,不仅帮助学生巩固知识,加深理解,为今后的学习奠定基础,更为重要的是促进学生带着问题积极思考,开动脑筋,利于学生数学思维能力的形成。
2.利用认知冲突促进学生思维
当呈现给学生的问题有几种可能性时,他们往往产生认知冲突,不知选择哪个,这样引起的最大限度的心理“不平衡”,能激发学生的求知欲和好奇心。而求知欲和好奇心又是激发思维活动的一种内在情感力量,它对思维具有激活和指向作用,冲突的解除过程就是认知结构自我调节和完善的过程,是理解深化的过程。
我在考查学生对不等式的理解程度时,创设了下面的教学情境。师:请解不等式a-2﹥5。生:a-2+2﹥5+2,即:a﹥7。师:为什么要在不等式两边加2呢?生:在不等式两边同时1,或加10,或加100,总之加上同样的数,不等号都不改变。师:如果在较大的一端加2,同时在较小的一端加比原来小的数(如加1),那么不等号的方向也不改变,例如:a-2+2﹥5+1,即a﹥6,而这与上面的算法结果就不同了,这是怎么回事?在这个教学情境中,学生心理上产生了如下三种认知冲突:(1)就结果来说,a﹥7和a﹥6,哪个正确?(2)就方法来说,不等式两边同时加一个数与不等式较大一端加大数,较小一端加小数哪个正确?(3)就两种解法来说,“a﹥b→a+x﹥b+c”“a﹥b,c﹥d→a+c﹥b+d”哪个正确?学生思维活跃,课堂上呈现出情绪激昂、主动思维的气氛,最后,在教师诱导下,以排除认识冲突为契机,加深了理解,弄清了两者的区别和联系。
3.运用逻辑思维解决数学教学中的问题
逻辑是创造性思维中最富有创造性特征的重要组成部分,所以逻辑思维能力在解题中有着不可低估的作用。我们知道,中学数学教学内容从总体上可以分为两个层次:一个称为表层知识,另一个称为深层知识。表层知识包括概念、性质、法则、公式等数学的基本知识和基本技能,深层知识主要指数学思想和数学方法。数学教学中,应当时刻向学生提出各项能力提高的要求,另外还要使学生掌握数学的解题要领和解题方法。
例如,每次上课时都可以选择一些数学习题,让学生计时演算;结合教学内容教给学生一定的速算要领和方法;常用的数字,如20以内自然数的平方数、10以内自然数的立方数、特殊角的三角函数值、无理数、π、е、lg2、lg3的近似值都要做到“一口清”;常用的数学公式如平方和、立方和、一元二次方程的有关公式等等,都要做到应用自如。实际上,速算要领的掌握和熟记一些数据、公式等,在思维活动中是一个逻辑思维不断加强的过程,同时也训练了学生的数学技能,而数学技能的获得就成为一种数学思维能力了。
4.让学生勤动脑,多动手,培养学生数学思维
新实施的初中数学新课程标准明确指出:“要注重学生自主学习能动性和主动性的培养,特别是要激发学生解决问题的能力,提升学生的能动探究水平和能力。”现代教育理论下更加提倡学生的自主学习,更加关注学生获取知识的过程与数学思维能力的培养。而在传统教学中教师是课堂的主宰者与操纵者,学生只是被动地接收知识,毫无主观性、主体性与互动性。在这样的教学氛围中,学生的学习兴趣低下,很难激起对学习的激情,其教学效果收效甚微。要改变这一现状,就要把课堂交给学生,将学习的主动权还给学生,让学生真正成为课堂的主体、学生的主人,充分发挥学生的主观能动性,为学生提供更多的自主学习与主动探索的时间与空间,让学生多动手多操作,让学生在动手实践中积极探索、主动思维,使学生的学习不再是简单记忆、单纯模仿,而是知识的主动获取与构建的过程,让学生亲历知识的形成过程,这样的学习才是有效的学习,才能培养学生的数学思维能力。
5.适当组织课外实践活动,提高学生应用能力
数学产生于客观世界,反过来又为客观世界服务;让学生将所学到的数学理论知识用课外活动为实践和应用,既能提高他们的学习兴趣,又能巩固所学的理论知识,提高他们的综合素质。
如我在教学“相似形”时,曾组织了两次课外活动,一是利用成比例线段,就地测量操场上的旗杆和树木的高。二是利用相似三角形或全等三角形测量不能直接到达的两点间的距离。这些活动操作简单,学生易于接受,又极大地培养了他们的思维兴趣,巩固发展了他们的的数学知识。
总之,数学教师在教学过程中,培养学生良好的思维品质,是我们永远值得探讨的问题。只有在教学中不断总结,不断探索研究,方能取得成效。这样,我们数学教师才会在新课改中有所探索,有所发现,有所建树,有所收获。