论文部分内容阅读
采用价格便宜的聚甲基丙烯酸甲酯(PMMA)代替价格昂贵的硅或者玻璃作为聚合酶链式反应(PCR)微流控芯片的基片材料,采用柔性大、自动化程度高的准分子激光微加工方法代替加工工艺复杂的光刻化学腐蚀方法。通过对聚甲基丙烯酸甲酯准分子激光加工规律的研究,在19kV和18mm/min的优化加工参量下,在40mm×63mm的聚甲基丙烯酸甲酯基片上制备出了20个循环的聚合酶链式反应微流控芯片。芯片微通道横截面呈倒梯形,底面粗糙度小于0.5μm。微通道宽104μm,深56μm,长1040mm,加工耗时57min。该芯片和相同尺寸的盖片在160N和105℃条件下经过20min热压键合在一起,键合强度为0.85MPa。通过进样实验发现键合后的芯片具有良好的密封性。键合后的芯片和温控系统集成在一起,采用比例积分微分(PID)方法得到的控温精度为±0.2℃,采用红外热像仪得到的相邻温区间的温度梯度分别为16.5℃和22.2℃,即该芯片可以实现聚合酶链式反应扩增。
The use of inexpensive polymethylmethacrylate (PMMA) instead of expensive silicon or glass as a substrate for polymerase chain reaction (PCR) microfluidic chips, the use of flexible, highly automated excimer laser micro Processing methods instead of processing complex photolithographic chemical etching method. Through the research on the rule of laser processing of polymethylmethacrylate, 20 cycles of polymerases were prepared on 40mm × 63mm polymethylmethacrylate substrate under the optimal processing parameters of 19kV and 18mm / min Chain reaction microfluidic chip. Micro-channel chip cross-section was inverted trapezoid, the bottom surface roughness of less than 0.5μm. Microchannel width 104μm, depth 56μm, length 1040mm, processing time 57min. The chip and the cover of the same size at 160N and 105 ℃ under the conditions of 20min after thermocompression bonding together, the bonding strength of 0.85MPa. Through the injection experiment found that the bonded chip has a good seal. After bonding the chip and the temperature control system are integrated together, using the proportional integral derivative (PID) method to get the temperature control accuracy of ± 0.2 ℃, using the thermal imager obtained adjacent temperature range of the temperature gradient were 16.5 ℃ and 22.2 ℃, that the chip can be amplified by polymerase chain reaction.