论文部分内容阅读
解答题易错题强化训练(四)
【摘 要】
:
1. 设集合A={x|x2+4x=0,x∈R},B={x|x2+2(a+1)x+a2-1=0,a∈R,x∈R},若BA,求实数a的取值范围. 2. 设命题p:关于x的不等式2|x-2| 3. 已知函数f(x)=2+log3x,x∈[1,9],求函数y=[f(x)]2+f(x2)的值域. 4. 已知f(x)=x3-ax2-3x. (1) 若f(x)在[2,+∞)上是增函
【出 处】
:
高考进行时·高三数学
【发表日期】
:
2012年7期
其他文献
《考试说明》中对论述类文本阅读“分析概括作者在文中的观点态度”有如下说明:“作者的观点态度,有的直接表述,有的间接表述;有的集中,有的分散;有的明朗,有的含蓄。要求能够筛选和辨析,并加以分析概括。” 【考点分析】 作者的观点态度是对论述的问题所持的见解和主张。一般来说,论述类文本中作者的观点态度是明确的,但有的文章作者的观点态度就不够明显。有的文章从总体上看作者的观点态度是明确的,但具体到对文
期刊
你是否认为数学是最头疼的一门功课呢? 你是否觉得数学成绩总是忽上忽下,极不稳定呢? 你是否在考数学前总有或多或少隐隐的焦虑呢? 如今,数学在高考中的分量日益增加,“数学难”这一现象却依旧广泛出现。显然,数学已成为很多同学的拦路虎,下面将为大家带来一份数学高考备战策略,希望能让同学们有所受益。 问:高考复习期间做的数学习题越多越好? 答:学数学的关键并不在于做题的多少。我见过有很用功的学生
期刊
一、 填空题(本大题共14小题,每小题5分,共70分) 1. 满足条件{1,3}∪A={1,3,5}的所有集合A的个数是. 2. 不等式2-xx+4>0的解集是. 3. 命题p:00)的最大值为12,则2a+3b的最小值为. 11. 当1≤x≤2时,不等式mx2+2x-3>0恒成立,则实数m的取值范围是. 12. 已知方程x2+ax+2b=0的两根x1,x2满足0
期刊
一、 1. 突出了抽屉里东西对父亲的重要,设置悬念,激发读者的阅读兴趣,为后文情节展开作铺垫。 2. 对母亲的描写主要运用了语言描写。生动地刻画了母亲唠叨体贴而又多疑的形象,表现了母亲对父亲无微不至的关怀,表现了夫妻之间深厚的感情。 3. (1) 运用细节描写,写出了父亲在抚摸衬衫时的细致小心,表现了父亲对母亲的深沉的怀念。 (2) 通过神态描写和细节描写,写出了父亲在听说母亲留下了头发时的
期刊
近几年高考中,简易逻辑试题是以考查基本概念、性质与其它知识相结合为主的客观题出现,难度低,重基础.学习中只要夯实基础,把握逻辑联结词的含义、充要条件的意义、四种命题及相互关系,针对不同试题的考查形式,应用不同的求解策略,就能适应高考的考查要求. 一、 四种命题及其真假 【例1】 (课本题改编) 将下列命题“对顶角相等”改写成“若p则q”的形式,并写出它的逆命题、否命题与逆否命题. 分析 首先
期刊
一、 简单的线性规划问题 简单的线性规划问题是高考的热点之一,是历年高考的必考内容,主要以填空题的形式考查最优解的最值类问题的求解,高考的命题主要围绕以下几个方面:(1) 常规的线性规划问题,即求在线性约束条件下的最值问题;(2) 与函数、平面向量等知识结合的最值类问题;(3) 求在非线性约束条件下的最值问题;(4) 考查线性规划问题在解决实际生活、生产实际中的应用.而其中的第(2)(3)(4)
期刊
【佳作展示】 转机韩杰 “危机”与“机遇”之间往往只有一线之隔。关键要有慧眼识“机”,才能出现转机。世事如此,人生亦然。 “危机”总有其必然性。所谓“月有阴晴圆缺”,在一个人成长的过程中,不可能总是事事如意。年少时光,天真烂漫,却总会受到老师和家长的管束;走向社会,有了工作,成家生子,却发现没有了往日的自由;儿女成家立业,自己正想喘口气,却发现镜子里面的肖像已经苍颜白发。人的一生总会与这些“
期刊
不久前,在网上看了一篇《一位美国中学数学老师的公开课》的文章,叙述了一位美国老师如何让学生探求圆柱体体积的过程,体现了学生通过测量、计算、猜想、实证,终于“发现”了“新知”的探索精神。 圆柱体的体积问题,人类早已解决了,对于人类是“旧知”,但是,对于学生就是“新知”。美国这样的教学,就是在提倡一种思考问题及解决问题的方法:猜想 + 实证。这种以学生为中心的建构主义教学法,本质上是在训练学生探索“
期刊
1. 设O是△ABC内部一点,且OA+OC=-2OB,则△AOB与△AOC的面积之比为. 2. 关于x的不等式x2-2x+3≤a2-2a-1在R上的解集是,则实数a的取值范围是. 3. 在样本的频率分布直方图中,共有4个小长方形,这4个小长方形的面积由小到大构成等比数列{an},已知a2=2a1,且样本容量为300,则小长方形面积最大的一组的频数为. 4. 已知数列an,bn都
期刊
集合是学习数学的基础和工具,是高考的必考内容之一.由于它涉及到中学数学的各个环节,稍不注意,就会出错.为了跳出命题者所设计的陷阱,就必须注意集合中的一些细节. 一、 忽视空集致误 【例1】 若A=xx2-2x-3=0,B=xax-2=0,且A∩B=B,求由实数a组成的集合C. 错解 由A=xx2-2x-3=0,解得A=-1,3.∵A∩B=B,∴BA, 从而B=-1或B=3.当B=
期刊