论文部分内容阅读
针对常用背景减除方法忽略前景时空连续性的问题,以及动态背景对前景提取的干扰问题,基于张量鲁棒主成分分析(TRPCA)提出了一种改进的背景减除模型。该模型利用改进的张量核范数对背景进行约束,加强了背景的低秩性,保留了视频的空间信息;然后用3D全变分(3D-TV)对前景进行正则化约束,考虑了目标在时空上的连续性,有效地抑制了动态背景和目标移动对前景提取造成的干扰。实验结果表明,所提算法能有效地分离视频中的前景和背景,且与高阶鲁棒主成分分析(HoRPCA)、带有新核范数的张量鲁棒主成分分析(TRPCA-T