能力培养到素养成型的蜕变

来源 :中学数学杂志(高中版) | 被引量 : 0次 | 上传用户:llhxdlb
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  历经旨在夯实基础知识、加强基本技能、查漏补缺、扫清知识盲点、构建知识网络的第一轮复习后,考生迎接的是承上启下的第二轮复习.高考建筑的主体工程是否能保质保量竣工,取决于第二轮复习能否有效完成.
  保證第二轮复习的有效性,就必须明确第二轮复习的内涵,即第二轮复习并非第一轮复习的精简或重复,而是凝练思维、强化综合解题能力,达成做一题而懂一类,快速获得题感的有效过程.一些学校试图以专题式的题海作为实施第二轮复习的所谓“速效途径”,理由极其简单:应讲的、该复习的一轮都讲了,现在只能是刷题了!将第二轮复习演变成空洞的解题训练,或许暂时可以提高学生的解题速度,却难以给予学生真正解决高考试卷中出现的未知问题的方法.
  第二轮复习应该起到雪中送炭或锦上添花之效,应回归内功的修炼,即思维能力训练、独立解决未知问题的能力训练.怎样在第二轮复习中培养学生独立思考分析问题能力,促其形成应对试题的有效策略,在未借助教师等专家的提示下,从无到有建立思路并解决所遇到的各种问题?我们以为应该专注于解题思路和逻辑分析训练,以精练的语言和有效的素材,结合老师的经验,让学生洞穿问题真谛,进入高级的学习阶段.
  第二轮复习可从以下几个关注数学核心素养培养的新视角入手,深化解题的内涵,恰当引导,使学生深刻领悟如何建立思路、如何从策略上把握主动.
  新视角1 注重培养学生以学科语言转化为中心的数学建模思维核心素养.
  数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学方法构建解决问题的素养.
  第二轮复习中,首先要利用有效手段培养学生将描述性的一般问题转化为学科语言的专业核心素养,即将普通文字表述或情景类的描述转化为对应的数学量或数学视角描述.不具备学科语言转化能力,学生就不能真正理解题目在说什么、要干什么,无法挖掘数学素材的内在联系,建立思路、解决问题更无从谈起.
  如果不能将本题的问题转化为可理解的数学语言,学生就无法理解题目的求解意图,更难以建立解题思路.很多学生看到这个题目自然就想到的解法是求f(x)min≥0,因为含有参数a,所以求f(x)的最小值需要复杂的分类讨论,而且分类讨论思想又是学生的弱项.所以很多学生就做不下去了.若此题发现f(1)=0是解决问题的关键,及时领悟严谨的数学语言f(x)≥0即f(x)min=0,从而得出f′(1)=0,就得到问题成立的必要条件a=1,然后再分析a=1是否满足题意,这样能避开繁杂的分类讨论,使得本题的难度瞬间降低,很容易获得正确的答案.新视角2 注重培养逻辑推理、逻辑检索、科学探究与挖掘关键联系的数学思维核心素养.
  逻辑推理是指从以些事实和命题出发,依据规则推出其他命题的素养,逻辑推理是得到数学结论、构建数学体系的重要方式,是数学严谨性的基本保证,是人们在数学活动中进行交流的基本思维品质.
  第二轮复习应着重训练学生快速寻找题目问题内在联系的能力,使其学会科学探索,并逐渐具备探究能力.孤立地看待问题,只会将自己闭塞于井底,永远不能发现有益于思路建立的线索.当弄清楚问题是什么并可以将其转化为学科语言后,接下来就应该进行逻辑推理和逻辑检索:你知道了什么(把握已知);已知和问题之间的逻辑联系是什么,能构造什么;是否可以根据目前把握的纽带有效建立解决问题的映射关系,在符合逻辑的前提下,尝试构思的解决方案,一次不行再进行二次建构.模仿教师的解法,那是学习的初级阶段,随着实践的进行,一定要脱离模仿而内化为自我的思考模式.对问题的把握可能初期是不完整的,但随着思考的进行,逻辑能力让我们又逐渐获得了更多、更清晰、更完整的信息图景,寻找联系是解决问题的灵魂所在.
  本题组是利用高考原题改编的,在此题基础上进行多次变化,主要目的是考查学生善于思考和综合分析问题处理问题的能力.变式教学的实践证明,变式教学中每次变式都是数学思维的挑战,每次“联”“串”“变”都极大地调动了学生思维参与,通过“探”“悟”,领悟到数学博大精深,领悟到数学思维的深刻与广阔,培养了学生自我发展的能力,感受到数学的平易近人,有效地促进数学核心素养的培养.
其他文献
1  后来,当郁青庭的目光缓慢地越过高窗,想起一年前在海岛上度过的那些清晨和夜晚,终于明白自己为什么会成为现在这个人了。他的脸映在一小片月光里,像浮动在清凉的水中。他对水有特殊的感觉,或者可以说,他所有的故事都和水有关。  到海岛的第七天,郁青庭迎来了他的三十四岁生日。最近几年,他对生日几乎丧失了概念,这个特殊的日子究竟要提醒他什么,他不愿去细想。童年和少年时期的生日,因渗透了天然的喜悦而被他记住
《普通高中数学课程标准(实验)》第七条指出,“要强调对数学本质的认识,否则会将生动活泼的数学思维活动淹没在形式化的海洋里”[1].可以说,把握教学内容本质是实现有效教学的根基.不论课堂教学形式怎样变化,教师教学技能多么高超,如果一个教师不能深刻认识并准确把握教学内容的本质,就不能引导学生发现并理解所学内容的本质,也就不能实现学习中的有效迁移.  因此,教师必须深刻理解所教内容的本质,把握知识之间的
喜怒哀乐,是我们每天都在呈现的表情。那么人类的面部究竟能传达出多少种独特的表情呢?一项科学研究给出的答案是,至少21种。  “面带微笑的厌恶”“悲痛的愤怒”“开心的惊讶”等,真不愧是“行走的表情包”。研究还指出,人类在做表情时,表现出了惊人的一致性。  比如在表达快乐表情时,99%的志愿者会扬起面颊肌肉,延伸嘴角。那么,为了拥有如此丰富的表情,人脸究竟在进化的过程中做了哪些努力?其他动物的表情又是
【摘要】通过对教材上的一道二元不等式问题进行一般化的推广,得到一个优美的一般化的重要的二元不等式,进而用这个二元不等式演绎出一系列多元基本不等式,让学生在“玩”中学习数学.  【关键词】玩;学习数学;二元不等式;多元均值不等式  常庚哲教授说:“……大多数的数学定理和命题就是数学家‘瞎鼓捣’而玩出来的……”.“玩”不仅有“变式、变换、特殊化、一般化、类比、归纳、猜想、探索、推广、应用”的含义,而且
“自己活,让人活”,是维也纳人著名的基本原则。这个基本原则就是在我今天看来,也比一切绝对命令更富人性。因为我出生和长大的那个世纪并不是激情如炽的世纪。那是一个安排得井然有序的世界,层次分明,从容大度,一个不慌不忙的世界。新的速度的节奏还没有从机器、汽车、电话、无线电、飞机传到人的身上,时间和年龄还另有一种尺度,大家活得更为潇洒从容。  (節选自《昨日世界》时代文艺出版社)
2012年高考是湖北省高中实行新课改后的首届高考,备受多方关注.总体来说,在保持“稳定”的基调下,注重对新课标理念的渗透,加大对新增内容(函数的零点、三视图、程序框图、定积分(理)、几何概型、条件概率、全称命题与特称命题、复数(文)、合情推理、不等式选讲、几何证明选讲(理)、坐标系与参数方程(理)等)的考查力度,既体现了知识运用的灵活性和创造性,又兼顾了试题的连续和谐与稳定发展,丰富了数学试卷的内
一  爷爷黄法宝是一个猎人。因为他是猎人,他的两个儿子、我的伯父和父亲也成了猎人。  爷爷最初拿枪不是为了打猎。解放前,他是我们当地的武委会主任。革命快要胜利的时候,党组织大批干部南下,爷爷死活不肯。村里人都说是奶奶拉了爷爷的后腿,其实不是奶奶拉的,是爷爷舍不得奶奶。  虽没见过,但奶奶的漂亮方圆十里闻名。伯父的女儿、我的堂姐小莲,算得上一个美人坯子,但村里的老人说和年轻时候的奶奶比,还是相差甚远
吴彩凤站在屋门口瞅着天,天空是灰蒙蒙的,像一块无边的幕布。千千万万根线似的雨,如同灰暗的水幕里抽出来的丝条,追逐着从高空倾泻而下,没完没了。  雨水从屋檐下窜出一条条小水龙,哗啦哗啦往下流。有几条水龙落进水桶里,水桶早就满了,满桶水被击打着噼里啪啦地响。台阶上铺着一层草席,这是为了防备头天刚用水泥抹平整的台阶被雨水冲坏。从桶里溢出的雨水落在草席上,噗噗噗,噗噗噗。  吴彩凤穿着件湖蓝细布短褂,她仰
【摘 要】 本文比较分析普通高中数学课程标准实验教科书人教A版与北师大版“空间图形的基本关系与公理”这一节内容,揭示两版本教科书所渗透的数学思想方法、数学语言的使用与表达及例习题配置情况,进而为高中立体几何教学提供参考建议.研究发现,两版本教科书内容结构设置类同于《几何原本》的公理化系统,渗透公理化思想方法;内容呈现方式始于公理化思想方法的应用;北师大版图象语言的使用频率高于人教A版,而人教A版同
“但是没有任何东西,绝对没有任何东西,”他说,“比这一点更重要——那就是红军是人民的军队,它所以壮大是因为人民帮助我们。  “我记得一九二八年的冬天,我的部队在湖南只剩下两千多人,还受到包围。国民党军队把方圆三百里内的所有房子都燒掉了,抢去了所有粮食,然后对我们进行封锁。我们没有布,就用树皮做短衫,把裤腿剪下来做鞋子。头发长了没法剃,没有住的地方,没有灯,没有盐。我们病的病,饿的饿。农民们也好不了