论文部分内容阅读
本人从事中学数学教育教学工作10余年,对数学教育与育人抛有感触,现作阐述:数学是基础学科,也是“思想教育的工具”。随着基础教育由升学教育向素质教育的转轨,有必要进一步探讨数学教育的地位和作用、数学教学中的德育以及数学教师的德育意识的强化等问题。
一、数学教育在中学教育中的地位、作用
在中学阶段,数学是一门重要的基础学科。数学的重要性不仅在于它与其它学科有着密切联系。以及它在社会实践中有着广泛应用,更重要的是数学的学习能训练人的思维方法,完善人的个性品格。从这个意义上讲,数学所代表的进步观念已经超越了自身的范畴,数学的发展水平在一定程度上影响着人文科学的进步,影响着社会文明的进程。
中学数学内容蕴含着丰富的教育因素,表现出科学性、知识性和思想性的统一。数学教育具有巨大的智力价值,它以数学知识内蕴的思想方法引起人们思维方式的建立、完善和变革;不仅如此,它还具有极大的精神道德价值,能够引起人的思想品质、观念和道德价值的深刻变革。比如,通过数学思想教育,可以培养学生的整体观念、辩证唯物主义观点、爱国主义思想立场和良好的个性品质;通过数学审美教育,可以培养学生的审美情趣,使学生在美的感染中变得精神丰富和道德高尚。一言以蔽之,就是数学教育在全面提高人素质方面具有极大的作用;在新的时期,应该倍加重视数学育人的作用。
二、数学教学中实施德育的主要内容及方法
1.爱国主义教育
中国数学史是我国中学数学教材的一个重要组成部分。据不完全统计,中学课本中直接介绍中算史的就有17处,涉及数学家、数学发现、数学方法等近50个方面的内容,并以习题、注解、课文(如“勾股定理”一节)、附录等多种形式出现。这些内容都是进行爱国主义教育的生动素材。教师应当结合教材介绍我国在世界数学发展史中所占的重要位置。我们的祖先很早就产生了从有限中认识无限、从近似中认识精确以及以等积变换求体积等朴素的数学辩证思想,刘徽的“割圆术”就是最好的例证。我国在现代数学发展中也取得了丰硕成果,例如:我国在数论、微分几何等领域的研究都处在世界领先地位;我国中学生参加国际数学奥林匹克连续夺魁,这些史实和事例,说明中华民族不仅创造了光辉灿烂的古代文化,而且也为整个世界的现代文明做出了巨大贡献。
2.辩证唯物主义教育
数学是辩证的辅助工具和表现形式。中学数学中含有极其丰富的辩证唯物主义教育因素。教学中应当注意渗透以下观点:①运动、发展的观点。在中学数学中,任何一个数学概念、判断、推理都有自身的内在矛盾,都是运动、发展的,使学生充分认识一个数学对象自身的矛盾形态,而且利用这种矛盾揭示事物间的相互联系、相互转化,能有效地达到教育的目的。例如中学数学中的曲线与直线、点与圆、点与椭圆、无穷小量与零等都处在这种矛盾形态中,而这种矛盾恰恰为解决问题提供了过渡和说明。例如:过圆上一点P的圆的切线方程,就可视为该圆与P点所对应的“点圆”的公共弦方程。
②对立统一的观点。中学数学中的对立统一关系比比皆是。
例如:“未知与已知”、“相等与不等”、“常量与变量”、“有限与无限”、“动态与静态”等等。我们在解某些系数中会有字母的方程组时,可视未知数为已知数、已知数为未知数;在解一个含有两个未知数的方程时,可以考虑用不等式取等号的条件求解;在含有参变数的问题中,参变数既是变数,又是常数;在处理极限问题时,往往是变无限为有限来处理;几何中探求动点的轨迹的本质,就是寻求处在动态的对象中的不变因素,这些方法就是对立统一观点在数学中的具体运用。
③量变质变的观点。数学对象的运动、变化过程,往往也是一个量变质变的辩证过程。如,圆的切线就是割线运动的特殊状态,在教授这些内容时,教师应尽量创造条件,如使用彩色粉笔作图,或利用电化教学手段,把其间的关系表现得更为生动逼真,淋漓尽致。
④普遍联系的观点。任何一个数学问题内部的诸因素都是互相联系的。例如一个命题中的条件与结论总是互相制约的;一个数学分支的因素与其它分支的因素也存在着横向联系。要教育学生从不同的侧面把握数学对象以及它们之间的内在联系,类比、联想、变换、数形结合等,既体现了普遍联系的观点,又提供了探寻这种联系的方法。
3.个性品质方面的教育
严谨与抽象是数学的特征,也是数学对于一般文化修养所提供的不可缺少的养分,通过数学中严密的推理、论证,通过错例分析、检验解题过程的合理性及条件的等价性等,可以培养学生严密思考、言必有据以及实事求是、不轻率盲从的科学态度和作风。
数学需要智慧,更需要热情和毅力,尤其需要开创精神。数学是发展的,其历程又是艰难曲折的。通过数学教学,要培养学生坚韧不拔的意志;还可以通过一题多解、推广命题、难题巧解等手段,培养学生勇于探索创新的精神。
4.审美方面的教育
“哪里有数,哪里就有美。”中学数学中有着丰富的美育素材,数学语言的简练,数学思维的灵巧,数与形的融合,数式形的对称,它们无不展示了数学的美,数学的美,具有无比的感染力。
易被忽视的,是发挥数学美在学习知识、深化理解这方面所起的作用。其实,这时数学美是有其独到之功的。比如,可以根据数学美的和谐性特征,让学生对前后知识进行比较、串联,沟通它们的内在联系;适时阐述解题中的和谐化思想原则、方法等等。揭示了数学真与美的有机统一、岂不是使学生的思想在数学学习中步入新的天地!
数学教师,不要忘了美的诱因,美的魅力。
三、数学教师要强化德育意识
教育的核心是培养什么人的问题。新时期的数学教师,应该强化德育意识,更加重视发挥数学科的教育功能。
数学教师必须加强学习,首先提高自身的素质。要努力学习哲学,掌握辩证唯物主义的基本理论,力求站在哲学的高度分析教材,处理教材,阐述教学内容;要加强数学史的学习,了解数学发展的历史进程及各个时期的数学思想体系,力求达到历史与逻辑的统一;还应了解美学的有关知识。钻研当代的基础教育理论,探求学生学习数学的心理活动特征,以不断提高教学与教育水平。
数学教师要提高教书育人、以身作则的自觉性。在整个教学过程中,注意以端庄的教态、工整的板书、准确而生动的语言、严谨而活跃的思维,产生强烈的示范效应,使学生在优美的教育环境中,接受教育,茁壮成长。
一、数学教育在中学教育中的地位、作用
在中学阶段,数学是一门重要的基础学科。数学的重要性不仅在于它与其它学科有着密切联系。以及它在社会实践中有着广泛应用,更重要的是数学的学习能训练人的思维方法,完善人的个性品格。从这个意义上讲,数学所代表的进步观念已经超越了自身的范畴,数学的发展水平在一定程度上影响着人文科学的进步,影响着社会文明的进程。
中学数学内容蕴含着丰富的教育因素,表现出科学性、知识性和思想性的统一。数学教育具有巨大的智力价值,它以数学知识内蕴的思想方法引起人们思维方式的建立、完善和变革;不仅如此,它还具有极大的精神道德价值,能够引起人的思想品质、观念和道德价值的深刻变革。比如,通过数学思想教育,可以培养学生的整体观念、辩证唯物主义观点、爱国主义思想立场和良好的个性品质;通过数学审美教育,可以培养学生的审美情趣,使学生在美的感染中变得精神丰富和道德高尚。一言以蔽之,就是数学教育在全面提高人素质方面具有极大的作用;在新的时期,应该倍加重视数学育人的作用。
二、数学教学中实施德育的主要内容及方法
1.爱国主义教育
中国数学史是我国中学数学教材的一个重要组成部分。据不完全统计,中学课本中直接介绍中算史的就有17处,涉及数学家、数学发现、数学方法等近50个方面的内容,并以习题、注解、课文(如“勾股定理”一节)、附录等多种形式出现。这些内容都是进行爱国主义教育的生动素材。教师应当结合教材介绍我国在世界数学发展史中所占的重要位置。我们的祖先很早就产生了从有限中认识无限、从近似中认识精确以及以等积变换求体积等朴素的数学辩证思想,刘徽的“割圆术”就是最好的例证。我国在现代数学发展中也取得了丰硕成果,例如:我国在数论、微分几何等领域的研究都处在世界领先地位;我国中学生参加国际数学奥林匹克连续夺魁,这些史实和事例,说明中华民族不仅创造了光辉灿烂的古代文化,而且也为整个世界的现代文明做出了巨大贡献。
2.辩证唯物主义教育
数学是辩证的辅助工具和表现形式。中学数学中含有极其丰富的辩证唯物主义教育因素。教学中应当注意渗透以下观点:①运动、发展的观点。在中学数学中,任何一个数学概念、判断、推理都有自身的内在矛盾,都是运动、发展的,使学生充分认识一个数学对象自身的矛盾形态,而且利用这种矛盾揭示事物间的相互联系、相互转化,能有效地达到教育的目的。例如中学数学中的曲线与直线、点与圆、点与椭圆、无穷小量与零等都处在这种矛盾形态中,而这种矛盾恰恰为解决问题提供了过渡和说明。例如:过圆上一点P的圆的切线方程,就可视为该圆与P点所对应的“点圆”的公共弦方程。
②对立统一的观点。中学数学中的对立统一关系比比皆是。
例如:“未知与已知”、“相等与不等”、“常量与变量”、“有限与无限”、“动态与静态”等等。我们在解某些系数中会有字母的方程组时,可视未知数为已知数、已知数为未知数;在解一个含有两个未知数的方程时,可以考虑用不等式取等号的条件求解;在含有参变数的问题中,参变数既是变数,又是常数;在处理极限问题时,往往是变无限为有限来处理;几何中探求动点的轨迹的本质,就是寻求处在动态的对象中的不变因素,这些方法就是对立统一观点在数学中的具体运用。
③量变质变的观点。数学对象的运动、变化过程,往往也是一个量变质变的辩证过程。如,圆的切线就是割线运动的特殊状态,在教授这些内容时,教师应尽量创造条件,如使用彩色粉笔作图,或利用电化教学手段,把其间的关系表现得更为生动逼真,淋漓尽致。
④普遍联系的观点。任何一个数学问题内部的诸因素都是互相联系的。例如一个命题中的条件与结论总是互相制约的;一个数学分支的因素与其它分支的因素也存在着横向联系。要教育学生从不同的侧面把握数学对象以及它们之间的内在联系,类比、联想、变换、数形结合等,既体现了普遍联系的观点,又提供了探寻这种联系的方法。
3.个性品质方面的教育
严谨与抽象是数学的特征,也是数学对于一般文化修养所提供的不可缺少的养分,通过数学中严密的推理、论证,通过错例分析、检验解题过程的合理性及条件的等价性等,可以培养学生严密思考、言必有据以及实事求是、不轻率盲从的科学态度和作风。
数学需要智慧,更需要热情和毅力,尤其需要开创精神。数学是发展的,其历程又是艰难曲折的。通过数学教学,要培养学生坚韧不拔的意志;还可以通过一题多解、推广命题、难题巧解等手段,培养学生勇于探索创新的精神。
4.审美方面的教育
“哪里有数,哪里就有美。”中学数学中有着丰富的美育素材,数学语言的简练,数学思维的灵巧,数与形的融合,数式形的对称,它们无不展示了数学的美,数学的美,具有无比的感染力。
易被忽视的,是发挥数学美在学习知识、深化理解这方面所起的作用。其实,这时数学美是有其独到之功的。比如,可以根据数学美的和谐性特征,让学生对前后知识进行比较、串联,沟通它们的内在联系;适时阐述解题中的和谐化思想原则、方法等等。揭示了数学真与美的有机统一、岂不是使学生的思想在数学学习中步入新的天地!
数学教师,不要忘了美的诱因,美的魅力。
三、数学教师要强化德育意识
教育的核心是培养什么人的问题。新时期的数学教师,应该强化德育意识,更加重视发挥数学科的教育功能。
数学教师必须加强学习,首先提高自身的素质。要努力学习哲学,掌握辩证唯物主义的基本理论,力求站在哲学的高度分析教材,处理教材,阐述教学内容;要加强数学史的学习,了解数学发展的历史进程及各个时期的数学思想体系,力求达到历史与逻辑的统一;还应了解美学的有关知识。钻研当代的基础教育理论,探求学生学习数学的心理活动特征,以不断提高教学与教育水平。
数学教师要提高教书育人、以身作则的自觉性。在整个教学过程中,注意以端庄的教态、工整的板书、准确而生动的语言、严谨而活跃的思维,产生强烈的示范效应,使学生在优美的教育环境中,接受教育,茁壮成长。