论文部分内容阅读
针对当前恶意代码检测方法严重依赖人工提取特征和无法提取恶意代码深层特征的问题,提出一种基于双向长短时记忆(Bidirectional Long Short Term Memory, Bi-LSTM)模型和自注意力的恶意代码检测方法。采用Bi-LSTM自动学习恶意代码样本字节流序列,输出各时间步的隐状态;利用自注意力机制计算各时间步隐状态的线性加权和作为序列的深层特征;通过全连接神经网络层和Softmax层输出深层特征的预测概率。实验结果表明该方法切实可行,相较于次优结果,准确率提高了12.32%,误