【摘 要】
:
智慧农业是实现农业精准化的技术解决方案,智慧农业系统可以实时监测植物生长的各类环境参数,并可以应用相应的预测模型来模拟农作物生长环境的变化趋势,为科学决策提供依据。近年来有很多学者提出了时间序列的预测模型算法,在预测稳定性方面取得了不错的效果。为了进一步提升时间序列的预测精度,提出一种基于差分整合移动平均自回归模型和小波神经网络的组合预测模型。该组合模型结合2个单项模型优点,用差分整合移动平均自回归模型来拟合序列的线性部分,用小波神经网络来校正其残差,使其拟合曲线更接近于实际值,采用温室内的历史温度数据来
【机 构】
:
郑州轻工业大学计算机与通信工程学院
【基金项目】
:
河南省科技攻关项目(192102210243)。
论文部分内容阅读
智慧农业是实现农业精准化的技术解决方案,智慧农业系统可以实时监测植物生长的各类环境参数,并可以应用相应的预测模型来模拟农作物生长环境的变化趋势,为科学决策提供依据。近年来有很多学者提出了时间序列的预测模型算法,在预测稳定性方面取得了不错的效果。为了进一步提升时间序列的预测精度,提出一种基于差分整合移动平均自回归模型和小波神经网络的组合预测模型。该组合模型结合2个单项模型优点,用差分整合移动平均自回归模型来拟合序列的线性部分,用小波神经网络来校正其残差,使其拟合曲线更接近于实际值,采用温室内的历史温度数据来
其他文献
为了提高多目标鲨鱼算法在收敛速度和解集的分布性,提出一种基于分解和向量的多目标鲨鱼优化算法(DVMOSSO)。首先针对基本鲨鱼算法收敛性和多样性难以平衡的问题,通过在精英集采过程中,用参考向量计算角度惩罚距离标量值来平衡目标空间中解的收敛性和多样性。除此之外,针对基本鲨鱼算法在迭代后期易早熟收敛,陷入局部最优的缺陷,采用高斯变异策略重新初始化粒子,同时在精英解集中采用多项式变异来增加种群的多样性。最后,为了验证本文所提算法的有效性,将本文所提的DVMOSSO算法与NSGAII-DS、MOEA/D、MMOP
2020年新冠疫情爆发,佩戴口罩是有效抑制疫情反弹的重要措施之一,研究利用机器视觉技术检测人脸是否佩戴口罩有重要的现实意义。本文针对视频图像中人脸佩戴口罩时存在遮挡、检测目标较小、特征信息不明显、目标靠近群体不易识别等问题,提出一种基于DCN-SERes-YOLOv3的人脸佩戴口罩检测算法。首先,采用Res Net50与YOLOv3相结合的方式,将主干网络替换为Res Net50残差网络,为了平衡
特征选择是模式识别与数据挖掘的关键问题之一,它可以移除数据集中的冗余和不相关特征以提升学习性能。基于最大相关最小冗余准则,提出一种新的基于相关性与冗余性分析的半监督特征选择方法(S2R2),S2R2方法独立于任何分类学习算法。该方法首先对无监督相关度信息度量进行分析与扩充,然后结合信息增益,设计一种半监督特征相关性与冗余性度量,可以有效识别与移除不相关和冗余特征,最后采用增量搜索技术贪婪地构建特征子集,避免搜索指数级大小的解空间,提高算法的运行效率。本文还提出S2R2方法的快速过滤版本,FS2R2,以更好
BIM模型在Web前端的渲染问题是BIM技术在实际应用中的重要问题,利用三角面片来加快模型前端渲染效率(模型轻量化)是该问题的解决方案。根据Revit二次开发技术中BIM模型的三角面片网格平均质量系数较低的问题,针对BIM模型轻量化和基于Web端共享的应用需求,提出结合Revit二次开发和Delaunary剖分算法的改进算法。通过在Revit二次开发得到的BIM模型原始点上增加点,使得原始点与增加
语音识别是人机交互的重要方式,针对传统语音识别系统对含噪语音识别性能较差、特征选择不恰当的问题,提出一种基于迁移学习的深度自编码器循环神经网络模型。该模型由编码器、解码器以及声学模型组成,其中,声学模型由堆栈双向循环神经网络构成,用于提升识别性能;编码器和解码器均由全连接层构成,用于特征提取。将编码器结构及参数迁移至声学模型进行联合训练,在含噪Google Commands数据集上的实验表明本文模型有效增强了含噪语音的识别性能,并且具有较好的鲁棒性和泛化性。
目前许多检测方法只是对信息是否为谣言进行判断,对于谣言源的研究工作较少。针对以往研究忽略将节点权值作为一项重要参数应用于谣言源检测的问题,提出一种基于谣言中心性融入客观赋权算法模型,即BEW算法。该模型首先通过熵权算法计算网络节点权值,然后基于SIR模型进行模拟网络传播,同时考虑网节点权值嵌入特征,使用社区模块化聚类算法进行聚类,最终通过MLE算法实现源点预测的目的。在4个真实的网络数据集上进行仿真实验,实验结果表明该算法对于谣言源的识别可以达到较好的效果。
在基于深度学习的遥感图像目标检测任务中,船只目标通常呈现出任意方向排列的特性,而常见的水平框目标检测算法一般不能满足此类场景的应用需求。因此本文在单阶段Anchor-Free目标检测器Center Net的基础上加入旋转角度预测分支,使其能输出旋转边界框,以用于海上船只目标的检测。同时针对海上船只遥感数据集仅有水平边界框标注,无法直接适用于旋转框目标检测,且人工手动标注旋转框标签成本较高的问题,提
交通预测是构建智能交通系统的重要技术,实时准确的交通预测有利于规划路线,提高出行效率。为提高交通速度预测精度,提出一种基于图卷积网络的短时交通速度预测模型。首先对交通速度数据进行时空特征分析,然后结合数据空间特性构造可学习的邻接矩阵来建立图卷积网络,同时考虑到交通数据的时间特性,因此在图卷积的基础上又添加了长短期记忆网络和注意力机制来共同构建预测模型。实验结果表明由于同时考虑了交通速度数据的时空特性,本文模型均方根误差、平均绝对误差和平均绝对百分比误差均小于传统模型和单个模型,验证了提出的模型预测精确度更
海上船舶检测在海事监管领域发挥着重要的作用,然而由于海上的复杂环境以及船型的多样性,现有的基于卷积神经网络的方法在船舶检测领域难以同时满足高精度和实时的要求。针对复杂环境下海上船舶实时检测困难的问题,提出一种基于YOLOv4的YOLO-Marine模型,该模型将混合注意力机制引入检测网络的backbone部分,首先使用Mosaic方法对船舶数据进行预处理,然后通过K-Means++聚类得到初始an
针对现有基于注意力机制的图像内容中文描述模型无法在关注信息不减弱和无缺失的条件下对重点内容进行注意力加强关注的问题,提出一种图像特征注意力与自适应注意力融合的图像内容中文描述模型。模型使用编解码结构,首先在编码器网络中提取图像特征,并通过图像特征注意力提取图像全部特征区域的注意力信息;然后使用解码器网络将带有注意力权重的图像特征解码生成隐藏信息,以保证关注信息不减弱、无缺失;最后利用自适应注意力的