论文部分内容阅读
摘要:根据南海海域海洋981半潜式深水钻井平台的实际工况,分析了该钻井平台与锚泊系统的风、浪、流等环境载荷;以海洋石油981半潜式深水钻井平台作为锚泊定位系统研究的对象,应用AQWA进行模拟仿真,建立了平台的三维模型,并分析了钻井装置在波浪载荷作用下的运动响应;鉴于该深水钻井装置采用12点对称布锚方式被固定在海平面上,通过改变顶部预张力倾角,分析在不同环境载荷下,顶部预张力倾角对锚泊系统的张力响应和钻井装置运动响应的影响。
关键词:实验流体力学;环境载荷;锚泊系统;AQWA;运动响应;三维建模
中图分类号:TH161文献标志码:A
Abstract:The environmental loads such as wind, wave, flow onto drilling rig and mooring system of the HaiYangShiYou 981 are analyzed according to the actual working condition in South China Sea. The Haiyang Shiyou 981 drilling rig is chosen as the research object for mooring positioning system. The 3D model of the platform is established first by using the AQWA software to simulate and analyze the motion response of the drilling device under the action of wave load. As the deep water drilling rig is fixed in the sea with twelve anchors which are symmetrical distribution, the influence of top pretension angle on dynamic response of mooring system and motion response of drilling rig under different environmental load is analyzed by changing the inclination angle of the pretension at the top of the drilling rig.
Keywords:experimental fluid mechanics; environmental load; mooring system; AQWA; motion response; 3D modeling
钻井装置安全作业评估是深水钻井的重要研究内容[14]。在波浪载荷的作用下,钻井装置会产生6个方向的自由度,分别是横荡、纵荡、垂荡、横摇、纵摇和艏摇[56]。然而受隔水管系统的限制,钻井装置在作业时必须在一个安全作业窗口内工作,工作时应该控制平台的最大偏移值,不同的作业工况对平台偏移的限制不同,以保证钻井装置的安全作业。在正常情况下,钻井装置的水平偏移控制在水深的10%范围内。锚泊系统的设计与风、浪、流等载荷有相关,而锚泊系统的张力响应和钻井装置的运动响应是影响钻井装置安全作业至关重要的因素,因此将钻井装置与锚泊系统在风、浪、流等环境载荷作用下分别进行运动响应和张力响应显得很有必要[710]。
1钻井装置与锚泊系统的主要环境载荷
1.1风载荷计算
钻井平台受到的风载荷主要包括稳定风载和低频风载。风载荷主要作用在钻井平台海平面以上的部位,计算风载荷P时,作如下假定:
河北科技大学学报2015年第5期孙巧雷,等:基于AQWA的半潜式深水钻井平台运动响应与锚泊系统张力响应分析1)钻井平台所有部件所受风载荷方向与风入射方向保持一致;
2)钻井平台所有部件所受风载荷作用点在各部件投影面积的形心处;
3)钻井平台上各部件之间的遮蔽效应忽略不计。
从上述的分析结果可知,环境载荷从0°角入射时,平台的纵荡和低频纵荡值比较大;环境载荷从90°角入射时,平台的横荡和低频横荡值响应比较大,且其最大值、最小值、平均值和变化幅度随着预张力倾角的增加基本成增大趋势。同时,随着锚泊系统顶部预张力倾角的不断增大,平台的偏移量增加,运动动态响应程度增大;而系泊缆顶端最大张力减小,张力动态响应程度减小。
4结论
1)通过AQWA软件对海洋石油981半潜式钻井平台的模拟分析,得出了钻井装置锚泊系统锚泊线张力响应结果,在12点对称布锚方式下,锚泊线的角度为25°,45°,65°时,环境载荷从0°角入射,锚泊系统的张力响应最大值达到3 236 267 N,同时随着锚泊系统顶部预张力倾角的增大,锚泊线张力会减小;当倾角为50°时,锚泊线最大张力减小到1 570 878 N;
2)通过AQWA软件分析了钻井平台的运动响应,结果显示:环境载荷从0°角入射时,平台的纵荡和低频纵荡值比较大;环境载荷从90°角入射时,平台的横荡和低频横荡值响应比较大;随着锚泊系统顶部预张力倾角的不断增大,平台的偏移量增加,运动动态响应程度增大;系泊缆顶端最大张力减小,张力动态响应程度减小。
参考文献/References:
[1]颜波,宋林松,胡明兰.自升式钻井平台安全作业载荷动态效应的准静态分析[J].天然气工业,2013, 33(9):136140.
YAN Bo,SONG Linsong,HU Minglan.Quasistatic analysis of the dynamic effect of a jackup rig’s work load during safe drilling operation[J]. Natural Gas Industry, 2013, 33(9):136140. [2]马延德,张松涛,刘伟伟,等.大型半潜式钻井平台安全关键技术研究[J].中国造船,2003,44(2):5360.
MA Yande,ZHANG Songtao,LIU Weiwei, et al.Study of key safety technologies on large size semisubmersible rigs[J]. Shipbuilding of China, 2003,44(2):5360.
[3]ISO/DIS 199051—2010, Assessment of Mobile Offshore Units[S].
[4]张锡海,龙启汛.钻井平台安全装载于半潜船的技术探讨[J].航海技术,2013(1):3335.
ZHANG Xihai,LONG Qixun. Drilling platform security loading on semisubmersible vessel technology[J].Marine Technology, 2013(1):3335.
[5] 余龙,王娟.半潜式平台深水锚泊系统三维时域动力分析[J].中国海洋平台, 2007,22(6):3437.
YU Long,WANG Juan.Dynamic analsis of the 3D mooring system on semisubmersible platform in deep water[J].China Offshore Platform, 2007, 22(6): 3437.
[6] 杜庆贵,冯玮,谢彬,等. 半潜式钻井平台锚链携带量对运动性能的影响研究[J].石油矿场机械, 2014,43(3):1318.
DU Qinggui,FENG Wei,XIE Bin,et al. Research to the motion performance of a semi submersible drilling platform carrying different quantity of mooring chains[J].Oil Field Equipment,2014,43(3):1318.
[7]American Bureau of Shipping.Rules for Building and Classing Mobile Offshore Drilling Units[M].Houston:ABS,2008.
[8]王世圣,谢彬,曾恒一,等.3 000米深水半潜式钻井平台运动性能研究[J].中国海上油气,2007,19(4):277280.
WANG Shisheng, XIE Bin, ZENG Hengyi, et al. Study on motion performance of 3 000 meters deepwater semisubmersible drilling platform[J]. China Offshore Oil and Gas, 2007,19(4):277280.
[9] 陈鹏,马骏,杨青松,等.深水半潜平台张紧式系泊系统耦合动力响应研究[J].大连海事大学学报,2013,39(1):6569.
CHEN Peng,MA Jun,YANG Qingsong,et al.Coupleddynamic response investigation of tautwire mooring systems for deepwater semisubermersible platform[J]. Journal of Dalian Maritime University, 2013,39(1):6569.
[10]肖越,王言英.浮体锚泊系统计算分析[J].大连理工大学学报,2005,45(5):682688.
XIAO Yue, WANG Yanying.Computational analysis of moored floatingbody[J].Journal of Dalian University of Technology, 2005, 45(5):682688.
[11]施雷,张红,冯定,等. 海上隔水套管力学分析[J].船舶力学, 2013, 41(11) :6569.
SHI Lei,ZHANG Hong,FENG Ding,et al. Mechanical analysis of offshore riser [J]. China Petroleum Machinery,2013, 41(11): 6569.
[12] 岳吉祥,綦耀光,肖文生,等.半潜式钻井平台双联钻机钻台布局设计[J].中国石油大学学报(自然科学版),2008,32(6):113117.
YUE Jixiang,QI Yaoguang, XIAO Wensheng,et al.Drill floor layout of dual derrick rigs of semisubmersible drilling platforms[J].Journal of China University of Petroleum(Edition of Natural Science), 2008, 32(6):113117.
[13] WALREE I F V. Wind and Current Loads on Semisubmersibles[R]. MARIN: 498175SE,1991.
[14] PINKSTER J A. Low Frequency Second Order Wave Exciting Forces on Floating Structures[D].Delft:Delft University of Technology,1980. [15] 周洋.深水悬链线锚泊系统多成份锚泊线设计[D]. 哈尔滨:哈尔滨工程大学,2008.
ZHOU Yang.Design for Multicomponent Mooring Line of Deep Water Catenary Mooring System[D]. Harbin: Harbin Engineering University, 2008.
[16]杨旭,孙丽萍,陈静,等.深水半潜式钻井平台动力定位系统时域仿真模拟与模型试验[J].中国造船,2014(2):102113.
YANG Xu, SUN Liping, CHEN Jing,et al .Time domain simulation and model experiment of dynamic position system in deepwater semisubmersible drilling platform[J]. Shipbuilding of China, 2014(2):102113.
[17]叶谦,金伟良,何勇,等.半潜式平台极限状态评估[J].船舶力学,2012,16(3):277295.
YE Qian JIN Weiliang HE Yong,et al.Assessment of ultimate strength of semisubmersible platform[J].Journal of Ship Mechanics,2012,16(3):277295.
[18]李志海.深海半潜式平台多点系泊系统动力特性分析[D].东营:中国石油大学(华东),2010.
LI Zhihai.Dynamic Analysis of Multipoints Mooring System for Semisubmersible Platform[D].Dongying:China University of Petroleum (East China), 2010.
[19] 刘祥建.深海钻井船锚泊系统的设计与分析[D]. 哈尔滨:哈尔滨工程大学,2009.
LIU Xiangjian.Mooring Design and Analysis for Drilling Ship in Deepwater[D]. Harbin: Harbin Engineering University, 2009.
[20]赵战华. 深水半潜式平台张紧式系泊性能研究[D]. 青岛:中国海洋大学,2011.
ZHAO Zhanhua.Performance Study for Taut Mooring of Deepwater Semisubmersible Drilling Platform[D]. Qingdao:China Ocean University, 2011.
[21]RAN Z, KIM M H. Nonlinear coupled responses of a tethered spar platform in waves[J]. International Journal of Offshore and Polar Engineering, 1997(2):2734.
关键词:实验流体力学;环境载荷;锚泊系统;AQWA;运动响应;三维建模
中图分类号:TH161文献标志码:A
Abstract:The environmental loads such as wind, wave, flow onto drilling rig and mooring system of the HaiYangShiYou 981 are analyzed according to the actual working condition in South China Sea. The Haiyang Shiyou 981 drilling rig is chosen as the research object for mooring positioning system. The 3D model of the platform is established first by using the AQWA software to simulate and analyze the motion response of the drilling device under the action of wave load. As the deep water drilling rig is fixed in the sea with twelve anchors which are symmetrical distribution, the influence of top pretension angle on dynamic response of mooring system and motion response of drilling rig under different environmental load is analyzed by changing the inclination angle of the pretension at the top of the drilling rig.
Keywords:experimental fluid mechanics; environmental load; mooring system; AQWA; motion response; 3D modeling
钻井装置安全作业评估是深水钻井的重要研究内容[14]。在波浪载荷的作用下,钻井装置会产生6个方向的自由度,分别是横荡、纵荡、垂荡、横摇、纵摇和艏摇[56]。然而受隔水管系统的限制,钻井装置在作业时必须在一个安全作业窗口内工作,工作时应该控制平台的最大偏移值,不同的作业工况对平台偏移的限制不同,以保证钻井装置的安全作业。在正常情况下,钻井装置的水平偏移控制在水深的10%范围内。锚泊系统的设计与风、浪、流等载荷有相关,而锚泊系统的张力响应和钻井装置的运动响应是影响钻井装置安全作业至关重要的因素,因此将钻井装置与锚泊系统在风、浪、流等环境载荷作用下分别进行运动响应和张力响应显得很有必要[710]。
1钻井装置与锚泊系统的主要环境载荷
1.1风载荷计算
钻井平台受到的风载荷主要包括稳定风载和低频风载。风载荷主要作用在钻井平台海平面以上的部位,计算风载荷P时,作如下假定:
河北科技大学学报2015年第5期孙巧雷,等:基于AQWA的半潜式深水钻井平台运动响应与锚泊系统张力响应分析1)钻井平台所有部件所受风载荷方向与风入射方向保持一致;
2)钻井平台所有部件所受风载荷作用点在各部件投影面积的形心处;
3)钻井平台上各部件之间的遮蔽效应忽略不计。
从上述的分析结果可知,环境载荷从0°角入射时,平台的纵荡和低频纵荡值比较大;环境载荷从90°角入射时,平台的横荡和低频横荡值响应比较大,且其最大值、最小值、平均值和变化幅度随着预张力倾角的增加基本成增大趋势。同时,随着锚泊系统顶部预张力倾角的不断增大,平台的偏移量增加,运动动态响应程度增大;而系泊缆顶端最大张力减小,张力动态响应程度减小。
4结论
1)通过AQWA软件对海洋石油981半潜式钻井平台的模拟分析,得出了钻井装置锚泊系统锚泊线张力响应结果,在12点对称布锚方式下,锚泊线的角度为25°,45°,65°时,环境载荷从0°角入射,锚泊系统的张力响应最大值达到3 236 267 N,同时随着锚泊系统顶部预张力倾角的增大,锚泊线张力会减小;当倾角为50°时,锚泊线最大张力减小到1 570 878 N;
2)通过AQWA软件分析了钻井平台的运动响应,结果显示:环境载荷从0°角入射时,平台的纵荡和低频纵荡值比较大;环境载荷从90°角入射时,平台的横荡和低频横荡值响应比较大;随着锚泊系统顶部预张力倾角的不断增大,平台的偏移量增加,运动动态响应程度增大;系泊缆顶端最大张力减小,张力动态响应程度减小。
参考文献/References:
[1]颜波,宋林松,胡明兰.自升式钻井平台安全作业载荷动态效应的准静态分析[J].天然气工业,2013, 33(9):136140.
YAN Bo,SONG Linsong,HU Minglan.Quasistatic analysis of the dynamic effect of a jackup rig’s work load during safe drilling operation[J]. Natural Gas Industry, 2013, 33(9):136140. [2]马延德,张松涛,刘伟伟,等.大型半潜式钻井平台安全关键技术研究[J].中国造船,2003,44(2):5360.
MA Yande,ZHANG Songtao,LIU Weiwei, et al.Study of key safety technologies on large size semisubmersible rigs[J]. Shipbuilding of China, 2003,44(2):5360.
[3]ISO/DIS 199051—2010, Assessment of Mobile Offshore Units[S].
[4]张锡海,龙启汛.钻井平台安全装载于半潜船的技术探讨[J].航海技术,2013(1):3335.
ZHANG Xihai,LONG Qixun. Drilling platform security loading on semisubmersible vessel technology[J].Marine Technology, 2013(1):3335.
[5] 余龙,王娟.半潜式平台深水锚泊系统三维时域动力分析[J].中国海洋平台, 2007,22(6):3437.
YU Long,WANG Juan.Dynamic analsis of the 3D mooring system on semisubmersible platform in deep water[J].China Offshore Platform, 2007, 22(6): 3437.
[6] 杜庆贵,冯玮,谢彬,等. 半潜式钻井平台锚链携带量对运动性能的影响研究[J].石油矿场机械, 2014,43(3):1318.
DU Qinggui,FENG Wei,XIE Bin,et al. Research to the motion performance of a semi submersible drilling platform carrying different quantity of mooring chains[J].Oil Field Equipment,2014,43(3):1318.
[7]American Bureau of Shipping.Rules for Building and Classing Mobile Offshore Drilling Units[M].Houston:ABS,2008.
[8]王世圣,谢彬,曾恒一,等.3 000米深水半潜式钻井平台运动性能研究[J].中国海上油气,2007,19(4):277280.
WANG Shisheng, XIE Bin, ZENG Hengyi, et al. Study on motion performance of 3 000 meters deepwater semisubmersible drilling platform[J]. China Offshore Oil and Gas, 2007,19(4):277280.
[9] 陈鹏,马骏,杨青松,等.深水半潜平台张紧式系泊系统耦合动力响应研究[J].大连海事大学学报,2013,39(1):6569.
CHEN Peng,MA Jun,YANG Qingsong,et al.Coupleddynamic response investigation of tautwire mooring systems for deepwater semisubermersible platform[J]. Journal of Dalian Maritime University, 2013,39(1):6569.
[10]肖越,王言英.浮体锚泊系统计算分析[J].大连理工大学学报,2005,45(5):682688.
XIAO Yue, WANG Yanying.Computational analysis of moored floatingbody[J].Journal of Dalian University of Technology, 2005, 45(5):682688.
[11]施雷,张红,冯定,等. 海上隔水套管力学分析[J].船舶力学, 2013, 41(11) :6569.
SHI Lei,ZHANG Hong,FENG Ding,et al. Mechanical analysis of offshore riser [J]. China Petroleum Machinery,2013, 41(11): 6569.
[12] 岳吉祥,綦耀光,肖文生,等.半潜式钻井平台双联钻机钻台布局设计[J].中国石油大学学报(自然科学版),2008,32(6):113117.
YUE Jixiang,QI Yaoguang, XIAO Wensheng,et al.Drill floor layout of dual derrick rigs of semisubmersible drilling platforms[J].Journal of China University of Petroleum(Edition of Natural Science), 2008, 32(6):113117.
[13] WALREE I F V. Wind and Current Loads on Semisubmersibles[R]. MARIN: 498175SE,1991.
[14] PINKSTER J A. Low Frequency Second Order Wave Exciting Forces on Floating Structures[D].Delft:Delft University of Technology,1980. [15] 周洋.深水悬链线锚泊系统多成份锚泊线设计[D]. 哈尔滨:哈尔滨工程大学,2008.
ZHOU Yang.Design for Multicomponent Mooring Line of Deep Water Catenary Mooring System[D]. Harbin: Harbin Engineering University, 2008.
[16]杨旭,孙丽萍,陈静,等.深水半潜式钻井平台动力定位系统时域仿真模拟与模型试验[J].中国造船,2014(2):102113.
YANG Xu, SUN Liping, CHEN Jing,et al .Time domain simulation and model experiment of dynamic position system in deepwater semisubmersible drilling platform[J]. Shipbuilding of China, 2014(2):102113.
[17]叶谦,金伟良,何勇,等.半潜式平台极限状态评估[J].船舶力学,2012,16(3):277295.
YE Qian JIN Weiliang HE Yong,et al.Assessment of ultimate strength of semisubmersible platform[J].Journal of Ship Mechanics,2012,16(3):277295.
[18]李志海.深海半潜式平台多点系泊系统动力特性分析[D].东营:中国石油大学(华东),2010.
LI Zhihai.Dynamic Analysis of Multipoints Mooring System for Semisubmersible Platform[D].Dongying:China University of Petroleum (East China), 2010.
[19] 刘祥建.深海钻井船锚泊系统的设计与分析[D]. 哈尔滨:哈尔滨工程大学,2009.
LIU Xiangjian.Mooring Design and Analysis for Drilling Ship in Deepwater[D]. Harbin: Harbin Engineering University, 2009.
[20]赵战华. 深水半潜式平台张紧式系泊性能研究[D]. 青岛:中国海洋大学,2011.
ZHAO Zhanhua.Performance Study for Taut Mooring of Deepwater Semisubmersible Drilling Platform[D]. Qingdao:China Ocean University, 2011.
[21]RAN Z, KIM M H. Nonlinear coupled responses of a tethered spar platform in waves[J]. International Journal of Offshore and Polar Engineering, 1997(2):2734.