论文部分内容阅读
针对多标签学习中实例标签的缺失补全和预测问题,本文提出一种基于正则化的半监督弱标签分类方法(简称SWCMR),方法同时兼顾实例相似性和标签相关性.SWCMR首先根据标签相关性对弱标签实例的缺失标签进行初步预估,然后利用弱标签实例和无标签实例构造邻域图,从实例相似性和标签相关性角度构建基于平滑性假设的正则化项,接下来利用预估后的弱标签实例结合无标签实例训练半监督弱标签分类模型.在多种公共多标签数据集上的实验结果表明,SWCMR提高了分类性能,尤其是标签信息较少时,分类效果提升更显著.