论文部分内容阅读
将径向基函数(radial basis function,RBF)插值引入积分方程的求解中,具体将待求函数表示为RBF的线性组合,再通过配点法将积分方程离散为线性或非线性方程组,求得权系数后给出待求函数的近似表示.论文选用的RBF是插值性能优异的多重二次曲面(multiquadric,MQ)函数,能在较少节点下取得较高的近似精度;而且RBF定义为距离的函数,在三维或高维插值时仅需改变距离公式,因而便于推广到高维积分方程求解中.在RBF插值矩阵的构造中,元素的积分计算分别通过高斯积分或基于区域剖分的数值求积