论文部分内容阅读
为解决PCA(Principal Component Analysis)因样本数目少而无法得到稳健协方差矩阵问题,根据主元分析的几何意义,引入CS分解贝叶斯空间估计的思想,将协方差矩阵问题转化成特征子空间估计问题.首先根据大量历史数据运用PCA离线建立SPE(Squard Prediction Error)统计量阈值和故障模式特征子空间矩阵库,当在线检测到系统存在异常情况时,由于受一定的环境影响只能得到小样本故障数据,利用本文方法可估计出小样本数据的特征子空间矩阵;然后通过对比特征子空间与故障模式特征子空