论文部分内容阅读
[摘 要]本文在引发继电保护电力系统短路故障的基础之上,提出了一些保护措施,并且以110kV 继电保护电力系统为例,对短路电流计算的一些相关内容,进行了阐述和分析,其主要目的就是保证继电保护电力系统运行的稳定性和安全性,避免短路故障发生概率,提升电力行业经济效益的同时,也为电力行业的发展,给予一定的支持。
[关键词]继电保护 电力系统 短路保护
中图分类号:S125 文献标识码:A 文章编号:1009-914X(2019)05-0014-01
1、 引发继电保护电力系统短路故障的主要因素
在继电保护电力系统运行的过程中,引发短路故障的因素有很多,主要体现在绝缘体、三相系统、电力用户等方面,下面就针对这几个方面,对引发继电保护电力系统短路故障的主要因素,进行了简要的分析和阐述:
1.1 绝缘体
从电力系统的方面来分析,短路故障发生主要表现在横向系统和纵向系统等方面,主要因为由于导体的不同,并且保护力度相对较差,进而导致短路故障的发生。导体出现短路故障的因素主要是因为电力系统内部绝缘体,出现受损的现象,进而影响横向系统和纵向系统运行的稳定性。其实,绝缘体是属于一种的不容易导电的物质,那么在电流穿过的时候,绝缘体主要是根据自身的性能,利用较强的电阻将电流和其它物质进行绝缘。但是,若是绝缘体若是受到损坏,绝缘体的自身行性能就会消失,这样电流就会任意的穿过,在这个过程中,一旦电流相对较大,就会导致继电保护电力系统短路故障的发生。另外,电力人员在电力作业的过程中,若是出现存在误差,或者违反规定的作业行为,都会引发继电保护电力系统短路故障的发生,影响了系统供电的稳定性和安全性。
1.2 三相系统
从三相系统的角度分析,三相系统短路故障主要是指电力系统中的横向故障,具体来说,三相系统短路故障主要体现在三相短路、两相短路、单相接地短路以及两相接地短路等方面,并且三相系统短路故障主要是因为三相阻抗产生异常,发生短路的时候电流和电压是处于相等的状态,一般都是以单相短路为主,三相短路产生的概率不是很高。但是,一旦发生三相短路的话,其影响范围是非常大的,继电保护电力系统安全性和稳定性随之下降。
1.3 电力用户方面
由于地区的发展程度和经济程度等方面的不同,人口密度也有着很大程度上的不同,和对电力需求的程度也是不相同。针对人口密集的城市,用电量是非常大,因此对继电保护电力系统的建设也相对较大,电缆线路交叉重叠,并且由于继电保护电力系统相关设备和电缆线的长时间使用,经常出现设备老化、电缆线绝缘受损的现象,若是不及时的进行有效解决,就会影响继电保护电力系统的正常运行。另外,针对人口较少的地区,由于技术跟不上,工作人员也不够专业,这样很难定期展开继电保护电力系统安全检验工作,其中所存在的安全隐患便不能有效消除,增加了继电保护电力系统短路故障发生的概率。
2、 继电保护电力系统短路的防治措施
要想降低继电保护电力系统短路故障发生的概率,主要是以“防治”手段为主。下面就对是继电保护电力系统短路的防治措施,进行了简要的分析和阐述:
2.1 避雷针的安装
雷击很容易对继电保护电力系统内部和外部等方面进行损坏,若是情况相对严重的话,很容易产生起火、停电、设备损坏等方面。因此,在变电站各项设备安装的过程中,需要根据实际情况安装避雷针,来避免雷击对继电保护电力系统的损坏。另外,在避雷针安装的过程中,一定要根据运行状态,选择合适的避雷针类型,保证两者处于一致的状态。同时,在避雷针安装的过程中,一定要做好各个线路的连接,避免引发其它故障的发生。
2.2 故障点电源的切断
在继电保护电力系统内部,各个方面之间都是有着联系的,也就是说其中的一个方面差出现问题,就会影响整个电路系统导致短路故障的产生,若是不及时的处理,就会造成严重的损失。因此,在继电保护电力系统运行防治的过程中,一定根据故障发生的状态,查找短路故障点以及故障点锁定,并且需要对继电保护电力系统短路故障产生的类型,进行分析和判断。同时,在各个方面确定以后,需要切断故障点电源,这样可以在最大程度上保证工作人员检修维护工作的顺利展开,也避免影响不断的扩大。另外,工作人员也可以利用万能表对短路状态下的电流,进行详细、全面的记录,为后期运行调整,提供了重要的参考依据。
2.3 加强短路治理
对于电路系统设计,要充分考虑外部因素对电路系统的影响,如鸟类冲击对电力系统的破坏问题,应在设计方面采用半闭合结构设计,以降低鸟类因素对电力系统运行所产生的影响。在设备安装方面,要做好對粉尘等相关物质的处理,提高设备运行完整性,利用设计隔膜系统对空气中粉尘进行隔绝。最后应提高对设备的检测频率,提高系统运行效益,减少系统老化问题的产生,确保电力系统能够按照相关规范稳定运行。
3、 继电保护分析
3.1 熔断器保护
其实,最早短路保护一般是以电源端的电流增大造成线路发热而设计的,熔断器就是其中的一个,是起到发热和自熔的功能。在系统运行的过程中,若是电流足够大的话,熔断器的温度会先于系统其他部分而升高到将自身熔断的临界点,从而切断电流。同时,熔断器属于一种一次性保护的组件,是不可重复使用的,主要是因为熔断器在切断故障一相电流后,这样还会保证功供电的稳定性,但是还会隐藏故障隐患。另外,随着电流系统的不断发展,三联装熔断器逐渐应用到其中,在运行的过程中若是其中一个发生熔断,另外两相卡死机构中会有一个被弹簧锁死的机构收回,导致另外两相的熔断器一起跌落。但是,熔断过程是需要一个周期的,在这个周期可以通过相应技术进行调整,避免影响继电保护电力系统的正常运行。
3.2 相电流保护
相电流保护主要是在短路电流故障计算原理和电流互感器的基础之上,并且利用机械方式作为继电保护电力系统线路切断保护的一项形式。在相电流保护的过程中,最开始的保护形式主要是在互感器上面取出电流,直接流经继电器吸合保持回路上的一个常闭节点,并且在电流足够大的时候,这样常闭节点的电磁力将抵消常闭节弹簧压力,常闭节点可以将主接触器的吸合电流拿掉,进而实现保护的目的。
3.3 零序电流保护
短路故障现象的发生,都会直接影响继电保护电力系统运行的稳定性,内部电流相位紊乱,也就是零序电流保护。因此,为了保证继电保护电力系统运行的稳定性,一定要对该方面给予足够的重视。同时,在固定的时间内部,可以将零序电流整定的短路继电保护取代相电流保护,并且一定要对其内部电流系统进行梳理,这样才能尽最大可能保证电流运行的有序性,避免发生紊乱的现象,降低继电保护电力系统短路故障现象发生的概率。
结束语
电力系统不管是各行业发展中,还是在人们日常生活中,都占据着非常重要的因素。但是,在运行的过程中,经常会受到一些因素的而影响,经常会产生运行故障,例如:短路等方面,若是不能进行及时的维护,就会影响电力系统的正常供电,电力企业的经济效益也会有所下降。因此,本文对继电保护电力系统短路保护的相关内容,进行了深入的分析和研究,提出了一些保护措施,主旨就是保证电力系统供电的稳定性,降低运行故障发生的系数。
参考文献
[1]郭坚定.电力系统短路故障分析[J].科技经济导刊,2017(19):105+104.
[2]支淑香.试析电力系统短路故障及短路电流危害及限制对策[J].现代国企研究,2016(24):155.
[3]巩凡.电力系统中短路故障与继电保护的措施探讨[J].电工文摘,2016(04):45-47+50.
[关键词]继电保护 电力系统 短路保护
中图分类号:S125 文献标识码:A 文章编号:1009-914X(2019)05-0014-01
1、 引发继电保护电力系统短路故障的主要因素
在继电保护电力系统运行的过程中,引发短路故障的因素有很多,主要体现在绝缘体、三相系统、电力用户等方面,下面就针对这几个方面,对引发继电保护电力系统短路故障的主要因素,进行了简要的分析和阐述:
1.1 绝缘体
从电力系统的方面来分析,短路故障发生主要表现在横向系统和纵向系统等方面,主要因为由于导体的不同,并且保护力度相对较差,进而导致短路故障的发生。导体出现短路故障的因素主要是因为电力系统内部绝缘体,出现受损的现象,进而影响横向系统和纵向系统运行的稳定性。其实,绝缘体是属于一种的不容易导电的物质,那么在电流穿过的时候,绝缘体主要是根据自身的性能,利用较强的电阻将电流和其它物质进行绝缘。但是,若是绝缘体若是受到损坏,绝缘体的自身行性能就会消失,这样电流就会任意的穿过,在这个过程中,一旦电流相对较大,就会导致继电保护电力系统短路故障的发生。另外,电力人员在电力作业的过程中,若是出现存在误差,或者违反规定的作业行为,都会引发继电保护电力系统短路故障的发生,影响了系统供电的稳定性和安全性。
1.2 三相系统
从三相系统的角度分析,三相系统短路故障主要是指电力系统中的横向故障,具体来说,三相系统短路故障主要体现在三相短路、两相短路、单相接地短路以及两相接地短路等方面,并且三相系统短路故障主要是因为三相阻抗产生异常,发生短路的时候电流和电压是处于相等的状态,一般都是以单相短路为主,三相短路产生的概率不是很高。但是,一旦发生三相短路的话,其影响范围是非常大的,继电保护电力系统安全性和稳定性随之下降。
1.3 电力用户方面
由于地区的发展程度和经济程度等方面的不同,人口密度也有着很大程度上的不同,和对电力需求的程度也是不相同。针对人口密集的城市,用电量是非常大,因此对继电保护电力系统的建设也相对较大,电缆线路交叉重叠,并且由于继电保护电力系统相关设备和电缆线的长时间使用,经常出现设备老化、电缆线绝缘受损的现象,若是不及时的进行有效解决,就会影响继电保护电力系统的正常运行。另外,针对人口较少的地区,由于技术跟不上,工作人员也不够专业,这样很难定期展开继电保护电力系统安全检验工作,其中所存在的安全隐患便不能有效消除,增加了继电保护电力系统短路故障发生的概率。
2、 继电保护电力系统短路的防治措施
要想降低继电保护电力系统短路故障发生的概率,主要是以“防治”手段为主。下面就对是继电保护电力系统短路的防治措施,进行了简要的分析和阐述:
2.1 避雷针的安装
雷击很容易对继电保护电力系统内部和外部等方面进行损坏,若是情况相对严重的话,很容易产生起火、停电、设备损坏等方面。因此,在变电站各项设备安装的过程中,需要根据实际情况安装避雷针,来避免雷击对继电保护电力系统的损坏。另外,在避雷针安装的过程中,一定要根据运行状态,选择合适的避雷针类型,保证两者处于一致的状态。同时,在避雷针安装的过程中,一定要做好各个线路的连接,避免引发其它故障的发生。
2.2 故障点电源的切断
在继电保护电力系统内部,各个方面之间都是有着联系的,也就是说其中的一个方面差出现问题,就会影响整个电路系统导致短路故障的产生,若是不及时的处理,就会造成严重的损失。因此,在继电保护电力系统运行防治的过程中,一定根据故障发生的状态,查找短路故障点以及故障点锁定,并且需要对继电保护电力系统短路故障产生的类型,进行分析和判断。同时,在各个方面确定以后,需要切断故障点电源,这样可以在最大程度上保证工作人员检修维护工作的顺利展开,也避免影响不断的扩大。另外,工作人员也可以利用万能表对短路状态下的电流,进行详细、全面的记录,为后期运行调整,提供了重要的参考依据。
2.3 加强短路治理
对于电路系统设计,要充分考虑外部因素对电路系统的影响,如鸟类冲击对电力系统的破坏问题,应在设计方面采用半闭合结构设计,以降低鸟类因素对电力系统运行所产生的影响。在设备安装方面,要做好對粉尘等相关物质的处理,提高设备运行完整性,利用设计隔膜系统对空气中粉尘进行隔绝。最后应提高对设备的检测频率,提高系统运行效益,减少系统老化问题的产生,确保电力系统能够按照相关规范稳定运行。
3、 继电保护分析
3.1 熔断器保护
其实,最早短路保护一般是以电源端的电流增大造成线路发热而设计的,熔断器就是其中的一个,是起到发热和自熔的功能。在系统运行的过程中,若是电流足够大的话,熔断器的温度会先于系统其他部分而升高到将自身熔断的临界点,从而切断电流。同时,熔断器属于一种一次性保护的组件,是不可重复使用的,主要是因为熔断器在切断故障一相电流后,这样还会保证功供电的稳定性,但是还会隐藏故障隐患。另外,随着电流系统的不断发展,三联装熔断器逐渐应用到其中,在运行的过程中若是其中一个发生熔断,另外两相卡死机构中会有一个被弹簧锁死的机构收回,导致另外两相的熔断器一起跌落。但是,熔断过程是需要一个周期的,在这个周期可以通过相应技术进行调整,避免影响继电保护电力系统的正常运行。
3.2 相电流保护
相电流保护主要是在短路电流故障计算原理和电流互感器的基础之上,并且利用机械方式作为继电保护电力系统线路切断保护的一项形式。在相电流保护的过程中,最开始的保护形式主要是在互感器上面取出电流,直接流经继电器吸合保持回路上的一个常闭节点,并且在电流足够大的时候,这样常闭节点的电磁力将抵消常闭节弹簧压力,常闭节点可以将主接触器的吸合电流拿掉,进而实现保护的目的。
3.3 零序电流保护
短路故障现象的发生,都会直接影响继电保护电力系统运行的稳定性,内部电流相位紊乱,也就是零序电流保护。因此,为了保证继电保护电力系统运行的稳定性,一定要对该方面给予足够的重视。同时,在固定的时间内部,可以将零序电流整定的短路继电保护取代相电流保护,并且一定要对其内部电流系统进行梳理,这样才能尽最大可能保证电流运行的有序性,避免发生紊乱的现象,降低继电保护电力系统短路故障现象发生的概率。
结束语
电力系统不管是各行业发展中,还是在人们日常生活中,都占据着非常重要的因素。但是,在运行的过程中,经常会受到一些因素的而影响,经常会产生运行故障,例如:短路等方面,若是不能进行及时的维护,就会影响电力系统的正常供电,电力企业的经济效益也会有所下降。因此,本文对继电保护电力系统短路保护的相关内容,进行了深入的分析和研究,提出了一些保护措施,主旨就是保证电力系统供电的稳定性,降低运行故障发生的系数。
参考文献
[1]郭坚定.电力系统短路故障分析[J].科技经济导刊,2017(19):105+104.
[2]支淑香.试析电力系统短路故障及短路电流危害及限制对策[J].现代国企研究,2016(24):155.
[3]巩凡.电力系统中短路故障与继电保护的措施探讨[J].电工文摘,2016(04):45-47+50.