论文部分内容阅读
针对现有基于深度学习的木梁柱缺陷检测存在的泛化能力差、模型复杂、参数计算量大、实时性差导致的难以在线应用等问题,提出一种结合数据增强和轻量化模型的YOLOv3木梁柱缺陷检测算法。使用包括数据增强、区域删除和图像混合技术增强自制的COCO格式数据集,在不增加额外计算量的前提下使模型的泛化性能和鲁棒性增强。使用轻量化模型MobileNetV3替换原YOLOv3的骨干网络并更换激活函数,在减少模型的参数量的基础上提升模型的预测速度。在制作的COCO数据集的测试结果表明:与原YOLOv3网络相比,所设计模型