论文部分内容阅读
目的探索图像纹理分析方法对原发性肝癌CT图像的识别能力。方法首先从一阶统计特征、灰度共生矩阵、灰度行程矩阵3方面提取正常肝脏和原发性肝癌CT图像的纹理特征,然后采用t检验进行特征选择,最后利用BP神经网络对保留的特征进行分类识别。结果 BP神经网络对正常肝的识别率是100±0.00%,对原发性肝癌的识别率是93.60±5.35%。结论 BP神经网络经设计优化后能达到较高的识别准确率,对于原发性肝癌的计算机辅助诊断具有一定实际意义和理论价值。