捷变射电天文观测终端及其定标算法的研究

来源 :现代电子技术 | 被引量 : 0次 | 上传用户:itfwfp
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
传统的射电天文观测是一项繁琐且耗时的工作,需要在换源或定标时频繁地更换本振、滤波器等模块,但是大型望远镜的观测时间非常宝贵,因此提高射电望远镜的观测效率具有重要的意义.文中提出的捷变收发方案是软件无线电领域的一种新型设计方案,通过程控可以实现本振、滤波器等参数的快速切换,还可以实现快捷灵活的射电天文观测.在FPGA中实现数字信号处理,并对信号进行FFT处理和频域叠加,其模拟前端电路可以在程控下实现滤波器带宽的改变,达到在6 GHz带宽内对0.2~56 MHz带宽任意选取,从而在较小的采样频率下实现更高的时间分辨率和频谱分辨率.经过实验验证,文中平台在云南天文台40 m射电望远镜上能够取得良好的效果,并将射电天文定标的效率提高4~6倍.
其他文献
为了满足半导体激光器(LD)对电流源高稳定性、低噪声的性能要求,文中基于负反馈原理设计一种可调节低噪声恒流源电路.该电路使用带隙基准电压源AD780BN提供低噪声、低温漂的基准电压,配合多路复用器ADG1606的选择功能,由低噪声运放LT1677构成的负反馈恒流驱动电路通过JFET将电压转换成电流,经过JFET和BJT构成的调整网络输出稳定的电流,实现了稳定的多电流输出.实际电路测试结果表明:该恒流源电路在3.8~5.5 V的输入电压范围内,输出电流稳定度在0.007%~0.029%之间;在电流调控模块控
回环检测是视觉SLAM中的一个重要模块,成功检测出回环能够有效减少环境地图生成过程中的累积误差.针对传统方法主要利用人工设计特征,具有对光照变化非常敏感等问题,将深度学习算法运用于回环检测中,提出一种基于卷积神经网络的回环检测算法.利用预训练的卷积神经网络模型VGG16提取图像卷积特征,选取网络末端的池化层作为图像的全局特征表示,并通过感知哈希算法判断特征相似性,验证回环.从准确性和运算时间上在New college数据集上评估该算法的性能.实验结果表明,相对于传统算法,提出的算法有着更高的准确度和速率,
面对我国心血管疾病患病人数的不断增长,针对心血管疾病的预测,利用监护系统获得医疗数据,寻找出合适的疾病预测方法,及时发现并解决健康问题,创新性地提出一种基于概率神经网络和遗传算法的心脏病预测模型.其中,使用概率神经网络作为分类器,遗传算法进行特征选择.模型分为三个阶段:首先,采用标准的UCI数据库中心脏病数据集进行预处理;然后,提供一种基于遗传算法的包裹式特征选择方法来选择显著特征;最后,使用概率神经网络训练得到预测模型.实验结果表明,相较于其他模式识别方法,提出的模型使用更少的特征取得了更高的准确率.通
根据电力变压器特高频局部放电信号特征,文中设计一种基于FPGA+ARM架构的特高频局部放电检测仪.该架构通过利用FPGA强大的可编程能力,不仅大大减少了硬件设计的复杂度,而且还提高了整个系统运行的速度,同时在FPGA中创新性地设计了可以灵活控制VGA大小的DAC8562模块及可灵活控制滤波程度的FIR滤波器模块,为在复杂的环境中快速有效地检测出局放信号提高了保障.利用ARM芯片强大的数据处理能力对数据进行处理及多重参数的配置,从而快速准确地检测出特高频局部放电.最后,通过系统测试,文中设计的特高频局部放电