论文部分内容阅读
针对现有卷积神经网络图像超分辨率复原算法中映射函数容易出现过学习、损失函数收敛性不足等问题,通过结合现有视觉识别算法和深度学习理论对其进行改进。首先将原有SRCNN层数从3层提高到13层,并提出一种自门控激活函数形式swish,代替以往网络模型常用的sigmoid、Re LU等激活函数,充分利用swish函数的优势,有效避免了过拟合问题,更好地学习利用低分辨率到高分辨率图像之间的映射关系指导图像重建;然后在传统网络损失函数中引入Newton-Raphson迭代法理论,进一步加快了收敛速度。最后通过实