论文部分内容阅读
线要素化简是地图自动综合中的重要部分之一。当前线化简算法的参数和阈值一般依赖于人工设定,且对不同的化简环境缺乏自适应学习能力。将线要素化简视作一种对局部化简单元的取舍二分类问题,从案例学习的角度出发,提出了一种新的基于支持向量机(support vector machine,SVM)的线化简方法。该方法首先以节点和弯曲为化简单元,从专家化简结果中自动获取化简案例;然后提取化简单元的特征描述项作为化简案例的属性空间,利用SVM机器学习方法进行训练,得到用于线化简的SVM分类器;最后通过SVM分类器对新