论文部分内容阅读
当数据中存在大量椒盐噪声时,传统的鲁棒非负矩阵分解方法无法获得更具有鲁棒性的低维特征.为了解决该问题,本文提出了一种更具有鲁棒性的权重曼哈顿非负矩阵分解来修复被污染的数据点以及通过曼哈顿矩阵分解获得鲁棒的特征表示.本文提出的模型可以被看作为非凸非光滑的优化问题,可以通过加速梯优化理论和最小一乘法求其局部最优解.通过对人脸图像ORL数据集加入椒盐噪声,实验结果表明本文提出的算法在图像修复和学习特征表示方面更有效、更鲁棒.