数学课堂因“提问”而精彩

来源 :中学教学参考·理科版 | 被引量 : 0次 | 上传用户:hujun_xiao
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  在教学中,要实现学生学习方式的改变,就是要把学习过程中的发现、探究、研究等认识活动突显出来,使学习过程更多地成为学生发现问题、提出问题、分析问题、解决问题的过程,实践表明,教师通过课堂提问这种手段可以引发学生对问题的思考,促进学生问题意识的形成和实践能力的发展。
  然而在现实的教学过程中,提问并没有达到预期的目标,许多教师将提问看作是一种很简单的教学方式,没有深入地思考运用时应遵循的一系列原则、技能和技巧,精心地设计课堂提问,提问随意性大,一堂课多的提几十个问题,少的只提几个问题,没有针对性和推进性,提问的质量不高,缺乏艺术性,单调,没有给学生留下探究的空间,没有把课堂真正还给学生,提问的设计缺乏科学性使学生的创新思维受到抑制,可以说,这样的提问不仅不能很好地发挥提问的教育价值,而且还会抑制学生的思维活动,因此,教师在教学中要精心设计有价值的问题,把握好问题的难度、梯度、密度、角度,使课堂提问更有效,下面结合具体课堂教学过程来谈谈提问的技巧。
  
  一、提问要控制问题的难度
  
  课堂提问难度要适中,课堂提问内容要有难易差别,符合学生的年龄特点和认知水平,假如内容过于简单,达不到启发的目的;提问的内容过难,又让学生不知所措,无从下手,因此,要在学生原有认知水平的基础上设置一些适合的问题,并可由浅人深,让学生循序渐进,从而让他们的思维经历发现的过程,而不会感到“高不可攀”。
  
  二、提问要有趣
  
  数学历来给人的感觉就是枯燥、乏味,不是计算就是证明,这些都成了学生学习数学的拦路虎,俗话说:“兴趣是最好的老师,”学生往往对在生活情境中接受知识更感兴趣,我们若能从数学与生活出发,结合学生身边的事和物来提出问题,然后在生活问题中体现数学知识的重要性,就能让学生清楚数学的生活化,知道数学的实际用途,从而激发学生的学习兴趣,
  例如,在进行黄金分割教学中,设计这样的提问引入:你想使自己的身材看起来更匀称吗?在人体下半身与身高的比例上,越接近0.618,越给人美感,遗憾的是即使是身体修长的芭蕾舞演员也达不到如此的完美,某女士身高1.68米,下半身1.02米,她应该选择多高的高跟鞋看起来更美呢?从学生熟悉而又感兴趣的实际生活引出问题,既激发了学生的求知欲,调动学生的学习兴趣,也更进一步促进了学生的智力潜能,
  数学源于生活,又应用指导于生活,生活中数学无处不在,我们需要在日常的教学中设计具有价值的生活性问题,有意识地训练学生用数学的眼光审视实际问题,从而达到激发学生的求知欲,提高学生学习兴趣的目的。
  
  三、提问要启智思维
  
  教师恰到好处的提问,不仅能激发学生强烈的求知欲望,而且还能促使其知识内化,课堂教学中教师的主导作用发挥得如何,取决于教师引导启发作用发挥的程度,因此课堂提问必须具备启发性,通过提问、解疑的思维过程,达到诱导思维的目的,
  例如,在进行“三角形中位线”的教学时,要求学生对性质定理“三角形的中位线平行于第三边,并且等于第三边的一半”进行证明:已知:如图,D、E分别是zEABC的边AB,AC的中點,求证:DE//BC,DE=1/2BC,
  教师做如下的启发性提问:
  师:能直接证明DE∥BC,DE=1/2BC吗?
  学生:不能,
  师:从条件出发由D、E分别是△ABC的边AB、AC的中点,你想到了怎样作辅助线?怎样证明?
  学生:延长DE到点F,使EF=DE,连接CF,可得△ADE≌△CFE,再证四边形DBCF是平行四边形。
  师:从结论DE=1/2BC出发,你想到了怎样作辅助线?怎样证明?
  学生:延长DE到点F,使EF=DE,连接CF,可得△ADE≌△CFE,再证四边形DBCF是平行四边形,
  师:从结论DE∥BC出发,你想到了怎样作辅助线?怎样证明?
  学生:过点C作AB的平行线交DE的延长线于F点,证明四边形DBCF是平行四边形,
  师:从结论DE∥BC出发,你还想到了怎样作辅助线?怎样证明?
  学生:过点E作AB的平行线交BC于点F,过点A作BC的平行线交FE的延长线于G点,先证明四边形DBFG是平行四边形,再证四边形DBFE是平行四边形。
  就这样,教师所设计的问题由易到难、由简到繁、由小到大、由表及里,层层推进,步步深入,从而达到“围歼”难点的目的,问题一个一个地提出,又一个一个地被解决,这样学生经历了一个提出问题、分析问题、解决问题的完整过程,有利于启迪学生的思维,提高学生的智能素质。
  巴尔扎克曾说过:“打开一切科学的钥匙都毫无疑义的是问号,”可见,教师如何从提问人手,以调动学生参与的积极性,激活学生的创新意识是至关重要的,课堂提问的优化是课堂教学改革中十分重要的研究课题,每一位数学教师必须高度重视课堂提问的意义,掌握和发掘课堂提问的技巧,把握课堂提问的“度”,开阔学生思路,启发学生思维,发展学生的智力和能力,促进课堂教学质量的稳步提高。
  (责任编辑 黄春香)
其他文献
将碳纤维材料和预应力技术应用于高速公路的路堤当中,其目的用于减少路堤的竖向变形以及提高路堤的边坡稳定。介绍了在临长路路基施工中将碳纤维带作为加筋材料分层铺设在路堤
俄国教育家乌申斯基强调:"没有兴趣的强制性学习,就会扼杀学生探索真理的欲望。"我国古代教育家孔子说:"知之者不如好之者,好之者不如乐之者。"这里都说的是兴趣问题。
郴州公路沥青中心油场在进行技术改造时,通过调研、分析比较后,确定采用中压水加热技术。介绍了该技术的工艺流程、主要设施和改造后的应用效果。
体育新课程标准指出:体育课要树立“健康第一的指导思想,要注重学生的主体地位的发挥,让每个学生都能充分展示自我,体验到活动的乐趣。”中小学生正处在身心高度发展阶段,此阶段,中小学生各方面都在发展,各种能力都在提高。如果我们在课堂上留给学生五分钟的时间,让他们自由去支配,自由地发挥想象,教学效果又会怎样呢?  深有体会的体育教师都会发现,那些孩子会自发地组织起来,或游戏、或比赛、或开展其他活动,这样做
分析了湖南衡枣高速公路k167+760~920路段出现滑坡的原因,经边坡稳定性分析计算,提出了整治方案。
金属活动性顺序是中考的热点,从正向思维考查金属活动性顺序的角度有:第一,熟记金属活动性顺序,判断金属活动性强弱;第二,置换反应(金属+酸→盐+H2)发生的条件是反应物的金属是活泼金属
基于课堂笔试化的讲义式复习模式是指教师要求学生利用复习讲义或黑板等“笔试载体”,在规定的时间内对某一题型示例进行书面作答,再以作答内容为评议对象,通过学生互评、教师点
结合长永高速公路旧水泥砼路面改造工程,在综合基础资料调查结果及现有实际经验的基础上,依据加铺层结构设计原则,提出了旧水泥砼路面上沥青加铺层的结构方案及保证沥青加铺
分析了柔性路面设计中采用抗压模量作为结构层模量的弊端,提出了双模量理论,并推导出双模量理论的基本公式及试验方法.
从事思想品德课教学已十余载,亲历该门学科几经重大改革,虽然每次课程改革内容变化极大,但就其德育功能来说,不但没有改变,反而更增强和发挥它的教育效能。特别是2005年我市开始统