论文部分内容阅读
短文本理解是一项对于机器智能至关重要但又充满挑战的任务.这项任务有益于众多应用场景,如搜索引擎、自动问答、广告和推荐系统.完成这些应用的首要步骤是将输入文本转化为机器可以诠释的形式,即帮助机器"理解"短文本的含义.基于这一目标,许多方法利用外来知识源来解决短文本中语境信息不足的问题.通过总结短文本理解领域的相关工作,介绍了基于向量的短文本理解框架.同时,探讨了短文本理解领域未来的研究方向.