论文部分内容阅读
摘 要:新课程强调授课者的精心构思、设计,一堂成功的课,设计是基础,执教过程是实践,学生的参与是成果课堂的必要条件,本文拟就初中数学课堂的设计谈谈自己的一点拙见,以期能够抛砖引玉。
关键词:初中数学;教学设计;探究
一、新课程对数学课程的要求
(一)初中数学课程应当是代数、几何、分析和概率这四科的基础部分恰当配合的整体
数学研究对象是现实世界的数量关系和空间形式。基础数学的对象是数、空间、函数,相应的是代数、几何、分析等学科,它们是各成体系但又密切联系的。现代初中数学中出现了许多综合性数学分支,都是在它们的基础上产生并发展起来的,研究的思想方法也是它们的思想方法的综合运用。代数、几何、分析在相邻学科和解决各种实际问题中都有广泛应用,所以初中数学课程应当是它们恰当配合的整体。曾经出现过的把中学课程代数结构化(如“新数”)的设计方案。“以函数为纲”使中学数学课程分析化的设计方案都不成功,正是没有满足这一要求。
(二)适当增加应用数学的内容
应用数学近年来蓬勃发展,出现了许多新的分支和领域,应用范围也在日益扩大,这种形势也要求在中学数学课程中有所反映。从“新数运动”开始,各国数学课程内容中陆续增加了概率统计和计算机的初步知识。这一方面说明概率统计和计算机知识在社会生产和社会生活中的广泛应用,另一方面也说明数学的发展扩大了它的基础,对中学数学课程提出了新的要求。由于计算机科学研究的需要,“离散数学”越来越显得重要。因此,中学数学课程中应当增加离散数学的比重。
(三)系统性
基础数学中的分析到19世纪末才相继奠定了严格的逻辑基础。到本世纪30年代法国布尔巴基学派用公理化方法,使整个数学结构化。任何一个数学系统都可以归结为代数结构、序结构和拓扑结构这三种母结构的复合。经过用公理化方法的整理,使数学成为一个逻辑严密、系统的整体结构。因此,作为符合数学知识结构要求的中学数学课程就必须具有一定的系统性和逻辑严密性。
(四)突出数学思想和数学方法
现代数学进行着不同领域的思想、方法的相互渗透。许多曾经认为没有任何共同之处的数学分支,现在已建立在共同的统一的思想基础上了。
数学思想和方法把数学科学联结成一个统一的有结构的整体。所以,我们应该体现突出数学思想和数学方法。
《数学教材》以“反璞归真”的指导思想来满足数学学科发展的要求。
二、教育、心理学发展对数学课程的要求
(一)可接受性。教学内容、方法都要适合学生的认知发展水平。获得新的数学知识的过程,主要依赖于数学认知结构中原有的适当概念,通过新旧知识的相互作用,使新旧意义同化,从而形成更为高度同化的数学认知结构的过程,它包括输入、同化、操作三个阶段。因此,作为数学课程内容要同学生已有的数学基础有密切联系。其抽象性与概括性不能过低或过高,要处于同级发展水平。这样才能使数学课程内容被学生理解,被他们接受,才能产生新旧知识有意义的同化作用,改造和分化出新的数学认知结构。
(二)直观性
皮亚杰的认知发展阶段的理论认为,中学生的认知发展水平已由具体运算进入了抽象运算阶段,但是即使他们在整体上认知水平已经达到了抽象运算的水平,在每个新数学概念的学习过程中仍然要经历从具体到抽象的转化,他们在学习新的数学概念时仍采用具体或直观的方式去探索新概念。因此,数学课程应向学生提供丰富的直观背景材料。不拘泥于抽象的形式,着重于向学生提示抽象概念的来龙去脉和其本质。也就是要“反璞归真”。
(三)启发性
苏联心理学家维果斯基认为儿童心理机能“最近发展区”的水平。表现为发展程序尚未成熟,正处于形成状态。儿童还不能独立地解决一定的靠智力解决的任务,但只要有一定的帮助和自己的努力,就有可能完成任务。数学课程的启发性就在于激发、诱导那些正待成熟的心理机能的发展,不断地使“最近发展区”的矛盾得到转化,而进入更高一级的数学认知水平。
要使数学课程真正具有启发性,需要克服两种偏向:第一,内容过于简单,缺乏思考余地。没有挑战性,不能激发学生思维,甚至不能满足学生学习愿望。第二,内容过于复杂、抽象。超过了学生数学认知结构中“最近发展区”的水平,学生将会由于不能理解它,产生畏惧心理,最后厌恶学习数学。
《实验教材》用“顺理成章、深入浅出”的指导思想来体现以上诸要求。
现在有一种愿望:在中小学引进跨学科的,以社会为基础的设计工作,在这种设计工作中,学生会看到数学如何才能够应用到真正的“现实生活”问题上去,并且可望获得进一步学习的动力,会自然地产生建立“数学模型”的机会,实际上关于数学建模的学习包括了各种水平的活动。 (四)关于问题解决
问题解决是数学教育改革的热门话题,范围也在日益扩大,日本已把问题解决纳入指导要领(教学大纲)。美国的课程标准。仍把问题解决作为“一切数学活动的组成部分,应当成为数学课程的核心”,整个数学课程要围绕问题解决展开。英国也是把问题解决作为一种教学模式、数学教学的指导思想来对待的。而对文化压力的增长和新技术的挑战更加显得问题解决的重要。认为要通过教育中的更大的问题解决的方法去开发学生的智力。来回答迅猛的技术革命的问题,这里的原则是:如果我们不能预测明天需要什么,那么最好的回答是用思想武器武装下一代去面对的新的挑战。当然不能低估实现这种措施的困难。和60年代的“新数”不同,“新数”至少有大学训练的教师是了解其内容的,而问题解决除了少数人外,对绝大多数人都是全新的。 荷兰在1981-1985年间为文科开发了一套新的16-19岁的数学课程,对数学作了现实主义的处理。现实世界的问题在把它们数学化之前,先直观地考察,进行数学化,变成数学问题加以解决。这和“新数”的结构主义的处理恰成鲜明对照。
有些建议,通过数学建模把更多的问题解决因素引进高中数学:“我们确实要学生能够把他们的数学技能用到实践中去,而且只有通过活跃的问题解决他们才能做到这一点,问题可以是现实的或者纯数学的,统一它们的是,它们給学生以机会去: 应用他们的数学技能;小组活动;表现创造性、想像力、革新精神、批判性;激励进一步的数学学习。
(作者单位:重庆市石柱县第一初级中学)
关键词:初中数学;教学设计;探究
一、新课程对数学课程的要求
(一)初中数学课程应当是代数、几何、分析和概率这四科的基础部分恰当配合的整体
数学研究对象是现实世界的数量关系和空间形式。基础数学的对象是数、空间、函数,相应的是代数、几何、分析等学科,它们是各成体系但又密切联系的。现代初中数学中出现了许多综合性数学分支,都是在它们的基础上产生并发展起来的,研究的思想方法也是它们的思想方法的综合运用。代数、几何、分析在相邻学科和解决各种实际问题中都有广泛应用,所以初中数学课程应当是它们恰当配合的整体。曾经出现过的把中学课程代数结构化(如“新数”)的设计方案。“以函数为纲”使中学数学课程分析化的设计方案都不成功,正是没有满足这一要求。
(二)适当增加应用数学的内容
应用数学近年来蓬勃发展,出现了许多新的分支和领域,应用范围也在日益扩大,这种形势也要求在中学数学课程中有所反映。从“新数运动”开始,各国数学课程内容中陆续增加了概率统计和计算机的初步知识。这一方面说明概率统计和计算机知识在社会生产和社会生活中的广泛应用,另一方面也说明数学的发展扩大了它的基础,对中学数学课程提出了新的要求。由于计算机科学研究的需要,“离散数学”越来越显得重要。因此,中学数学课程中应当增加离散数学的比重。
(三)系统性
基础数学中的分析到19世纪末才相继奠定了严格的逻辑基础。到本世纪30年代法国布尔巴基学派用公理化方法,使整个数学结构化。任何一个数学系统都可以归结为代数结构、序结构和拓扑结构这三种母结构的复合。经过用公理化方法的整理,使数学成为一个逻辑严密、系统的整体结构。因此,作为符合数学知识结构要求的中学数学课程就必须具有一定的系统性和逻辑严密性。
(四)突出数学思想和数学方法
现代数学进行着不同领域的思想、方法的相互渗透。许多曾经认为没有任何共同之处的数学分支,现在已建立在共同的统一的思想基础上了。
数学思想和方法把数学科学联结成一个统一的有结构的整体。所以,我们应该体现突出数学思想和数学方法。
《数学教材》以“反璞归真”的指导思想来满足数学学科发展的要求。
二、教育、心理学发展对数学课程的要求
(一)可接受性。教学内容、方法都要适合学生的认知发展水平。获得新的数学知识的过程,主要依赖于数学认知结构中原有的适当概念,通过新旧知识的相互作用,使新旧意义同化,从而形成更为高度同化的数学认知结构的过程,它包括输入、同化、操作三个阶段。因此,作为数学课程内容要同学生已有的数学基础有密切联系。其抽象性与概括性不能过低或过高,要处于同级发展水平。这样才能使数学课程内容被学生理解,被他们接受,才能产生新旧知识有意义的同化作用,改造和分化出新的数学认知结构。
(二)直观性
皮亚杰的认知发展阶段的理论认为,中学生的认知发展水平已由具体运算进入了抽象运算阶段,但是即使他们在整体上认知水平已经达到了抽象运算的水平,在每个新数学概念的学习过程中仍然要经历从具体到抽象的转化,他们在学习新的数学概念时仍采用具体或直观的方式去探索新概念。因此,数学课程应向学生提供丰富的直观背景材料。不拘泥于抽象的形式,着重于向学生提示抽象概念的来龙去脉和其本质。也就是要“反璞归真”。
(三)启发性
苏联心理学家维果斯基认为儿童心理机能“最近发展区”的水平。表现为发展程序尚未成熟,正处于形成状态。儿童还不能独立地解决一定的靠智力解决的任务,但只要有一定的帮助和自己的努力,就有可能完成任务。数学课程的启发性就在于激发、诱导那些正待成熟的心理机能的发展,不断地使“最近发展区”的矛盾得到转化,而进入更高一级的数学认知水平。
要使数学课程真正具有启发性,需要克服两种偏向:第一,内容过于简单,缺乏思考余地。没有挑战性,不能激发学生思维,甚至不能满足学生学习愿望。第二,内容过于复杂、抽象。超过了学生数学认知结构中“最近发展区”的水平,学生将会由于不能理解它,产生畏惧心理,最后厌恶学习数学。
《实验教材》用“顺理成章、深入浅出”的指导思想来体现以上诸要求。
现在有一种愿望:在中小学引进跨学科的,以社会为基础的设计工作,在这种设计工作中,学生会看到数学如何才能够应用到真正的“现实生活”问题上去,并且可望获得进一步学习的动力,会自然地产生建立“数学模型”的机会,实际上关于数学建模的学习包括了各种水平的活动。 (四)关于问题解决
问题解决是数学教育改革的热门话题,范围也在日益扩大,日本已把问题解决纳入指导要领(教学大纲)。美国的课程标准。仍把问题解决作为“一切数学活动的组成部分,应当成为数学课程的核心”,整个数学课程要围绕问题解决展开。英国也是把问题解决作为一种教学模式、数学教学的指导思想来对待的。而对文化压力的增长和新技术的挑战更加显得问题解决的重要。认为要通过教育中的更大的问题解决的方法去开发学生的智力。来回答迅猛的技术革命的问题,这里的原则是:如果我们不能预测明天需要什么,那么最好的回答是用思想武器武装下一代去面对的新的挑战。当然不能低估实现这种措施的困难。和60年代的“新数”不同,“新数”至少有大学训练的教师是了解其内容的,而问题解决除了少数人外,对绝大多数人都是全新的。 荷兰在1981-1985年间为文科开发了一套新的16-19岁的数学课程,对数学作了现实主义的处理。现实世界的问题在把它们数学化之前,先直观地考察,进行数学化,变成数学问题加以解决。这和“新数”的结构主义的处理恰成鲜明对照。
有些建议,通过数学建模把更多的问题解决因素引进高中数学:“我们确实要学生能够把他们的数学技能用到实践中去,而且只有通过活跃的问题解决他们才能做到这一点,问题可以是现实的或者纯数学的,统一它们的是,它们給学生以机会去: 应用他们的数学技能;小组活动;表现创造性、想像力、革新精神、批判性;激励进一步的数学学习。
(作者单位:重庆市石柱县第一初级中学)