论文部分内容阅读
【摘 要】 Er:YAG激光属于中红外线激光,拥有适合切割牙体硬组织的特点。激光牙体预备与传统预备方法相比具有许多优点,可减轻治疗过程中的不适感和疼痛,患者更易接受。目前该激光已在临床逐渐开展使用,同时对该激光在牙体预备中的应用和研究不断深入,本文就其对牙本质粘接强度等的影响进行综述。
【关键词】Er:YAG 激光;牙本质粘接;拉伸强度;剪切强度
【中图分类号】R249 【文献标识码】A 【文章编号】1004-7484(2019)10-0147-02
Er:YAG(鉺:钇、铝、石榴石)激光是一种水动力生物激光系统,Hibst等[1]于1989年首次提出该激光能有效切割牙体硬组织,并在1997年获得美国食品药品监督管理局认证[2]。激光避免了传统涡轮机钻震动、噪音及产热高的缺点,并能预防过多的切削正常牙体组织,已有学者将其与喷砂、涡轮机钻相比较,发现激光去龋产生的疼痛最低[3]。
牙本质在经激光照射后其表面形貌、成分以及结构均发生了改变,关于这些变化将如何影响其粘接效果,已有众多学者展开研究。本文拟就Er:YAG激光对牙本质粘接性能影响的研究进展作一简要综述。
1 Er:YAG激光切割牙体硬组织的原理
Er:YAG激光的波长为2.94μm,对红外线的吸收峰值与水以及羟磷灰石中的OH-接近,激光能量可被照射区组织中的水分子充分吸收[4],具有超高能量的水分子作用于光照处的牙体组织产生微爆炸从而进行组织切割,但所产生的温度并未达到牙体组织的熔点[5]。龋坏牙本质含水量可高达54%[6],经铒激光预备时会优先爆破崩解,虽然该激光切割有效、安全,但热传导现象仍不可避免,预备时需使用水雾冷却,以免对牙髓组织造成热损伤[7]。
2 Er:YAG激光对牙本质粘接性能的影响
Er:YAG激光预备后的洞形,呈现出不规则边缘及粗糙的洞壁洞底,且牙本质还伴有溶解性和渗透性的改变。有学者发现,经激光预备的牙本质矿物含量及硬度高于传统方法预备,牙本质表面虽粗糙但未完全脱矿[8]。Guven等[9-10]分析比较了铒激光和金刚砂车针预备后牙本质上自酸蚀及酸蚀冲洗类粘接剂的牙本质剪切强度,发现激光+AdperSE Plus组获得的剪切强度显著高于车针预备组,而其他两组间不存在统计学差异。
da Silva等[11]也进行了相似的研究,发现无论使用何种粘接剂,两种方法所获得的剪切强度相近。Gurgan等[12]比较了2种粘接剂在激光及车针预备牙本质表面的剪切强度,其中激光+AdheSE组与车针处理组无显著差异,而激光+Excite组的强度却明显偏低,提示自酸蚀粘接系统可能更适合于激光预备后的牙本质。另有学者比较了5种不同粘接系统在经涡轮机和激光预备的健康牙本质上的粘接强度,发现使用激光并没有显著改变其粘接强度[13]。Ding等[1]在经Er:YAG激光预备的牙本质上评估了低通量激光和磷酸预处理对2种自酸蚀粘接剂强度的影响。结果显示,磷酸预处理组的拉伸强度最高,对照组与激光处理组之间不存在显著差异。Akin等[15]比较了激光和车针处理牙面后,老化过程对自酸蚀粘接剂粘接强度的影响,发现激光和车针处理组之间不存在显著差异,两者可获得同样的粘接耐久性。
又有许多科学家得出了相反的结论。Shirani等[16]比较了Single Bond和Clearfil SE Bond在激光预备后牙本质上的剪切强度,结果显示后者在激光预备表面的粘接强度显著降低。Brulat等[17]的结果发现,虽然激光预备过的牙本质表面没有玷污层,但自酸蚀粘接系统只能达到与车针预备相同甚至更低的粘接强度。Koliniotou-Koumpia等[18]也得出相似结论,认为激光照射过的牙本质表面,无论其深度或粘接剂的种类,均表现出更差的粘接强度。Ferreira[19]等比较了不同酸蚀时间对Single Bond在激光预备牙本质上拉伸强度的影响,发现改变酸蚀时间未产生显著变化,均低于传统方法处理组。此外,Neves等[20]比较了7种常用去龋方法处理后,自酸蚀粘接剂在剩余牙本质表面的拉伸强度,发现激光处理组所得的值最低。也有学者进行了相似的研究,发现无论使用自酸蚀或酸蚀冲洗粘接系统,激光组与车针组之间的粘接强度均未存在显著差异[21]。Koyuturk等[22]在乳磨牙上做了类似的研究,认为经铒激光处理过的牙本质可获得更高的粘接强度,且当使用Clearfil S3 bond时能获得较好结果。Yildiz等[23]提出了不同的结论,认为对乳牙而言不论使用自酸蚀或酸蚀冲洗粘接剂,车针去龋所获得的粘接强度均高于激光。
3 Er:YAG激光参数的影响
Baraba等[24]比较了激光不同脉冲宽度对粘接强度的影响,发现使用短波及中短波并不降低或提升自酸蚀粘接剂的拉伸强度,同时超短波组所得的值最低,可能不适用处理牙本质。Gisler等[25]研究了不同激光能量对粘接强度的影响,认为当激光能量密度稍高于牙本质燃烧阈值时会获得更高的粘接强度。也有学者在乳牙上得到了相似的结论,认为200mJ及300mJ的激光对乳牙预备而言是安全有效的,能量过高会损伤牙本质[26]。de Oliveira等[27]又分析了不同能量重复率比的激光对粘接强度的影响,结果显示自酸蚀粘接剂的粘接强度均高于酸蚀冲洗类
还有学者研究了在经涡轮机预备的牙本质表面上激光毛化对粘接强度的影响[28],通过在牙本质表面预备相距一定距离的、大小相同的微坑,发现间距100?m组所得的剪切强度最高,这为提高粘接效果提供了一种新的解决方法。
参考文献
[1] Hibst R, Keller U. Experimental studies of the application of the Er:YAG laser on dental hard substances:I.Measurement of the ablation rate [J]. Lasers Surg Med,1989, 9(4):338-344. [2] Keller U,Hibst R. Experimental studies of the application of the Er∶YAG laser on dental hard substances:Ⅱ. Light microscopic and SEM investigations[J]. Lasers Surg Med,1989,9(4):345-351.
[3] Okamoto K, Aoki S, Tamura Y. Comparisons of discomfort among cutting instruments for removal of carious dentine in children[J]. Pediatric Dental Journal, 2014.
[4] Vogel A,Venugopalan V. Mechanisms of pulsed laser ablation of biological tissues[J]. Chem Rev,2003,103(2):577-644.
[5] Kilinc E, Roshkind D M, Antonson S A, et al. Thermal safety of Er: YAG and Er, Cr: YSGG lasers in hard tissue removal[J]. Photomedicine and laser surgery, 2009, 27(4): 565-570.
[6] Hibst R,Keller U. Effects of water spray and repetition rate on the temperature evaluation during Er∶YAG laser ablation of dentine[J]. SPIE,1996,2623:139-144.
[7] Ito S,Saito T,Tay FR,et al. Water content and apparent stiffness of non-caries versus caries-affected human dentin[J]. J Biomed Mater Res B Appl Biomater,2005,72(1):109-116.
[8] Arbabzadeh F, Birang E, Nazem R, et al. A Comparative Study on Micro Hardness and Structural Changes of Dentin Floor Cavity Prepared by Er: YAG Laser Irradiation and Mechanical Bur[J]. Journal of Dentistry, Shiraz University of Medical Sciences, 2013, 14(2): 73-77.
[9] Guven Y, Aktoren O. Shear bond strength and ultrastructural interface analysis of different adhesive systems to Er: YAG laser-prepared dentin[J]. Lasers in medical science, 2013: 1-10.
[10] Moldes V L, Capp C I, Navarro R S, et al. In vitro microleakage of composite restorations prepared by Er: YAG/Er, Cr: YSGG lasers and conventional drills associated with two adhesive systems[J]. J Adhes Dent, 2009, 11(3): 221-229.
[11] da Silva M P, Barceleiro M O, Dias K R, et al. Shear bond strength of two adhesive systems bonded to Er: YAG laser-prepared dentin[J]. General dentistry, 2010, 59(3): 96-100.
[12] Gurgan S, Kiremitci A, Cakir F Y, et al. Shear bond strength of composite bonded to erbium: yttrium-aluminum-garnet laser-prepared dentin[J]. Lasers in medical science, 2009, 24(1): 117-122.
[13] Jiang Q, Chen M, Ding J. Comparison of tensile bond strengths of four one-bottle self-etching adhesive systems with Er: YAG laser-irradiated dentin[J]. Molecular biology reports, 2013, 40(12): 7053-7059.
[14] Ding J, He Y, Chen Y, et al. Effect of pretreatment on Er: YAG laser-irradiated dentin[J]. Lasers in medical science, 2013: 1-7. [15] Akin G E, Herguner-Siso S, Ozcan M, et al. Bond strengths of one-step self-etch adhesives to laser-irradiated and bur-cut dentin after water storage and thermocycling[J]. Photomedicine and laser surgery, 2012, 30(4): 214-221.
[16] Shirani F, Birang R, Malekipur M R, et al. Adhesion to Er: YAG laser and bur prepared root and crown dentine[J]. Australian dental journal, 2012, 57(2): 138-143.
[17] Brulat N, Rocca J P, Leforestier E, et al. Shear bond strength of self-etching adhesive systems to Er: YAG-laser-prepared dentin[J]. Lasers in medical science, 2009, 24(1): 53-57.
[18] Koliniotou-Koumpia E, Kouros P, Zafiriadis L, et al. Bonding of adhesives to Er: YAG laser-treated dentin[J]. European journal of dentistry, 2012, 6(1): 16-23.
[19] Ferreira L S, Apel C, Francci C, et al. Influence of etching time on bond strength in dentin irradiated with erbium lasers[J]. Lasers in medical science, 2010, 25(6): 849-854.
[20] Neves A A, Coutinho E, Cardoso M V, et al. Micro-tensile bond strength and interfacial characterization of an adhesive bonded to dentin prepared by contemporary caries-excavation techniques[J]. Dental Materials, 2011, 27(6): 552-562.
[21] Sirin Karaarslan E, Yildiz E, Cebe M A, et al. Evaluation of micro-tensile bond strength of caries-affected human dentine after three different caries removal techniques[J]. Journal of dentistry, 2012, 40(10): 793-801.
[22] Koyuturk A E, Ozmen B, Cortcu M, et al. Effects of Er: YAG laser on bond strength of self‐etching adhesives to caries‐affected dentin[J]. Microscopy Research and Technique, 2014,77(4):282-288.
[23] Yildiz E, Sirinkaraarslan E, Yegin Z, et al. Effect of caries removal techniques on the bond strength of adhesives to caries-affected primary dentin in vitro[J]. European journal of paediatric dentistry: official journal of European Academy of Paediatric Dentistry, 2013, 14(3): 209-214.
[24] Navarro R S, Gouw-Soares S, Cassoni A, et al. The influence of erbium: yttrium–aluminum–garnet laser ablation with variable pulse width on morphology and microleakage of composite restorations[J]. Lasers in medical science, 2010, 25(6): 881-889.
[25] Gisler G, Gutknecht N. The influence of the energy density and other clinical parameters on bond strength of Er: YAG-conditioned dentin compared to conventional dentin adhesion[J]. Lasers in medical science, 2014, 29(1): 77-84.
[26] Zhang S, Chen T, Ge L. Scanning electron microscopy study of cavity preparation in deciduous teeth using the Er: YAG laser with different powers[J]. Lasers in medical science, 2012, 27(1): 141-144.
[27] de Oliveira M T, Reis A F, Arrais C A G, et al. Analysis of the interfacial micromorphology and bond strength of adhesive systems to Er: YAG laser-irradiated dentin[J]. Lasers in medical science, 2013, 28(4): 1069-1076.
[28] Samad-Zadeh A, Harsono M, Belikov A, et al. The influence of laser-textured dentinal surface on bond strength[J]. Dental materials, 2011, 27(10): 1038-1044.
【关键词】Er:YAG 激光;牙本质粘接;拉伸强度;剪切强度
【中图分类号】R249 【文献标识码】A 【文章编号】1004-7484(2019)10-0147-02
Er:YAG(鉺:钇、铝、石榴石)激光是一种水动力生物激光系统,Hibst等[1]于1989年首次提出该激光能有效切割牙体硬组织,并在1997年获得美国食品药品监督管理局认证[2]。激光避免了传统涡轮机钻震动、噪音及产热高的缺点,并能预防过多的切削正常牙体组织,已有学者将其与喷砂、涡轮机钻相比较,发现激光去龋产生的疼痛最低[3]。
牙本质在经激光照射后其表面形貌、成分以及结构均发生了改变,关于这些变化将如何影响其粘接效果,已有众多学者展开研究。本文拟就Er:YAG激光对牙本质粘接性能影响的研究进展作一简要综述。
1 Er:YAG激光切割牙体硬组织的原理
Er:YAG激光的波长为2.94μm,对红外线的吸收峰值与水以及羟磷灰石中的OH-接近,激光能量可被照射区组织中的水分子充分吸收[4],具有超高能量的水分子作用于光照处的牙体组织产生微爆炸从而进行组织切割,但所产生的温度并未达到牙体组织的熔点[5]。龋坏牙本质含水量可高达54%[6],经铒激光预备时会优先爆破崩解,虽然该激光切割有效、安全,但热传导现象仍不可避免,预备时需使用水雾冷却,以免对牙髓组织造成热损伤[7]。
2 Er:YAG激光对牙本质粘接性能的影响
Er:YAG激光预备后的洞形,呈现出不规则边缘及粗糙的洞壁洞底,且牙本质还伴有溶解性和渗透性的改变。有学者发现,经激光预备的牙本质矿物含量及硬度高于传统方法预备,牙本质表面虽粗糙但未完全脱矿[8]。Guven等[9-10]分析比较了铒激光和金刚砂车针预备后牙本质上自酸蚀及酸蚀冲洗类粘接剂的牙本质剪切强度,发现激光+AdperSE Plus组获得的剪切强度显著高于车针预备组,而其他两组间不存在统计学差异。
da Silva等[11]也进行了相似的研究,发现无论使用何种粘接剂,两种方法所获得的剪切强度相近。Gurgan等[12]比较了2种粘接剂在激光及车针预备牙本质表面的剪切强度,其中激光+AdheSE组与车针处理组无显著差异,而激光+Excite组的强度却明显偏低,提示自酸蚀粘接系统可能更适合于激光预备后的牙本质。另有学者比较了5种不同粘接系统在经涡轮机和激光预备的健康牙本质上的粘接强度,发现使用激光并没有显著改变其粘接强度[13]。Ding等[1]在经Er:YAG激光预备的牙本质上评估了低通量激光和磷酸预处理对2种自酸蚀粘接剂强度的影响。结果显示,磷酸预处理组的拉伸强度最高,对照组与激光处理组之间不存在显著差异。Akin等[15]比较了激光和车针处理牙面后,老化过程对自酸蚀粘接剂粘接强度的影响,发现激光和车针处理组之间不存在显著差异,两者可获得同样的粘接耐久性。
又有许多科学家得出了相反的结论。Shirani等[16]比较了Single Bond和Clearfil SE Bond在激光预备后牙本质上的剪切强度,结果显示后者在激光预备表面的粘接强度显著降低。Brulat等[17]的结果发现,虽然激光预备过的牙本质表面没有玷污层,但自酸蚀粘接系统只能达到与车针预备相同甚至更低的粘接强度。Koliniotou-Koumpia等[18]也得出相似结论,认为激光照射过的牙本质表面,无论其深度或粘接剂的种类,均表现出更差的粘接强度。Ferreira[19]等比较了不同酸蚀时间对Single Bond在激光预备牙本质上拉伸强度的影响,发现改变酸蚀时间未产生显著变化,均低于传统方法处理组。此外,Neves等[20]比较了7种常用去龋方法处理后,自酸蚀粘接剂在剩余牙本质表面的拉伸强度,发现激光处理组所得的值最低。也有学者进行了相似的研究,发现无论使用自酸蚀或酸蚀冲洗粘接系统,激光组与车针组之间的粘接强度均未存在显著差异[21]。Koyuturk等[22]在乳磨牙上做了类似的研究,认为经铒激光处理过的牙本质可获得更高的粘接强度,且当使用Clearfil S3 bond时能获得较好结果。Yildiz等[23]提出了不同的结论,认为对乳牙而言不论使用自酸蚀或酸蚀冲洗粘接剂,车针去龋所获得的粘接强度均高于激光。
3 Er:YAG激光参数的影响
Baraba等[24]比较了激光不同脉冲宽度对粘接强度的影响,发现使用短波及中短波并不降低或提升自酸蚀粘接剂的拉伸强度,同时超短波组所得的值最低,可能不适用处理牙本质。Gisler等[25]研究了不同激光能量对粘接强度的影响,认为当激光能量密度稍高于牙本质燃烧阈值时会获得更高的粘接强度。也有学者在乳牙上得到了相似的结论,认为200mJ及300mJ的激光对乳牙预备而言是安全有效的,能量过高会损伤牙本质[26]。de Oliveira等[27]又分析了不同能量重复率比的激光对粘接强度的影响,结果显示自酸蚀粘接剂的粘接强度均高于酸蚀冲洗类
还有学者研究了在经涡轮机预备的牙本质表面上激光毛化对粘接强度的影响[28],通过在牙本质表面预备相距一定距离的、大小相同的微坑,发现间距100?m组所得的剪切强度最高,这为提高粘接效果提供了一种新的解决方法。
参考文献
[1] Hibst R, Keller U. Experimental studies of the application of the Er:YAG laser on dental hard substances:I.Measurement of the ablation rate [J]. Lasers Surg Med,1989, 9(4):338-344. [2] Keller U,Hibst R. Experimental studies of the application of the Er∶YAG laser on dental hard substances:Ⅱ. Light microscopic and SEM investigations[J]. Lasers Surg Med,1989,9(4):345-351.
[3] Okamoto K, Aoki S, Tamura Y. Comparisons of discomfort among cutting instruments for removal of carious dentine in children[J]. Pediatric Dental Journal, 2014.
[4] Vogel A,Venugopalan V. Mechanisms of pulsed laser ablation of biological tissues[J]. Chem Rev,2003,103(2):577-644.
[5] Kilinc E, Roshkind D M, Antonson S A, et al. Thermal safety of Er: YAG and Er, Cr: YSGG lasers in hard tissue removal[J]. Photomedicine and laser surgery, 2009, 27(4): 565-570.
[6] Hibst R,Keller U. Effects of water spray and repetition rate on the temperature evaluation during Er∶YAG laser ablation of dentine[J]. SPIE,1996,2623:139-144.
[7] Ito S,Saito T,Tay FR,et al. Water content and apparent stiffness of non-caries versus caries-affected human dentin[J]. J Biomed Mater Res B Appl Biomater,2005,72(1):109-116.
[8] Arbabzadeh F, Birang E, Nazem R, et al. A Comparative Study on Micro Hardness and Structural Changes of Dentin Floor Cavity Prepared by Er: YAG Laser Irradiation and Mechanical Bur[J]. Journal of Dentistry, Shiraz University of Medical Sciences, 2013, 14(2): 73-77.
[9] Guven Y, Aktoren O. Shear bond strength and ultrastructural interface analysis of different adhesive systems to Er: YAG laser-prepared dentin[J]. Lasers in medical science, 2013: 1-10.
[10] Moldes V L, Capp C I, Navarro R S, et al. In vitro microleakage of composite restorations prepared by Er: YAG/Er, Cr: YSGG lasers and conventional drills associated with two adhesive systems[J]. J Adhes Dent, 2009, 11(3): 221-229.
[11] da Silva M P, Barceleiro M O, Dias K R, et al. Shear bond strength of two adhesive systems bonded to Er: YAG laser-prepared dentin[J]. General dentistry, 2010, 59(3): 96-100.
[12] Gurgan S, Kiremitci A, Cakir F Y, et al. Shear bond strength of composite bonded to erbium: yttrium-aluminum-garnet laser-prepared dentin[J]. Lasers in medical science, 2009, 24(1): 117-122.
[13] Jiang Q, Chen M, Ding J. Comparison of tensile bond strengths of four one-bottle self-etching adhesive systems with Er: YAG laser-irradiated dentin[J]. Molecular biology reports, 2013, 40(12): 7053-7059.
[14] Ding J, He Y, Chen Y, et al. Effect of pretreatment on Er: YAG laser-irradiated dentin[J]. Lasers in medical science, 2013: 1-7. [15] Akin G E, Herguner-Siso S, Ozcan M, et al. Bond strengths of one-step self-etch adhesives to laser-irradiated and bur-cut dentin after water storage and thermocycling[J]. Photomedicine and laser surgery, 2012, 30(4): 214-221.
[16] Shirani F, Birang R, Malekipur M R, et al. Adhesion to Er: YAG laser and bur prepared root and crown dentine[J]. Australian dental journal, 2012, 57(2): 138-143.
[17] Brulat N, Rocca J P, Leforestier E, et al. Shear bond strength of self-etching adhesive systems to Er: YAG-laser-prepared dentin[J]. Lasers in medical science, 2009, 24(1): 53-57.
[18] Koliniotou-Koumpia E, Kouros P, Zafiriadis L, et al. Bonding of adhesives to Er: YAG laser-treated dentin[J]. European journal of dentistry, 2012, 6(1): 16-23.
[19] Ferreira L S, Apel C, Francci C, et al. Influence of etching time on bond strength in dentin irradiated with erbium lasers[J]. Lasers in medical science, 2010, 25(6): 849-854.
[20] Neves A A, Coutinho E, Cardoso M V, et al. Micro-tensile bond strength and interfacial characterization of an adhesive bonded to dentin prepared by contemporary caries-excavation techniques[J]. Dental Materials, 2011, 27(6): 552-562.
[21] Sirin Karaarslan E, Yildiz E, Cebe M A, et al. Evaluation of micro-tensile bond strength of caries-affected human dentine after three different caries removal techniques[J]. Journal of dentistry, 2012, 40(10): 793-801.
[22] Koyuturk A E, Ozmen B, Cortcu M, et al. Effects of Er: YAG laser on bond strength of self‐etching adhesives to caries‐affected dentin[J]. Microscopy Research and Technique, 2014,77(4):282-288.
[23] Yildiz E, Sirinkaraarslan E, Yegin Z, et al. Effect of caries removal techniques on the bond strength of adhesives to caries-affected primary dentin in vitro[J]. European journal of paediatric dentistry: official journal of European Academy of Paediatric Dentistry, 2013, 14(3): 209-214.
[24] Navarro R S, Gouw-Soares S, Cassoni A, et al. The influence of erbium: yttrium–aluminum–garnet laser ablation with variable pulse width on morphology and microleakage of composite restorations[J]. Lasers in medical science, 2010, 25(6): 881-889.
[25] Gisler G, Gutknecht N. The influence of the energy density and other clinical parameters on bond strength of Er: YAG-conditioned dentin compared to conventional dentin adhesion[J]. Lasers in medical science, 2014, 29(1): 77-84.
[26] Zhang S, Chen T, Ge L. Scanning electron microscopy study of cavity preparation in deciduous teeth using the Er: YAG laser with different powers[J]. Lasers in medical science, 2012, 27(1): 141-144.
[27] de Oliveira M T, Reis A F, Arrais C A G, et al. Analysis of the interfacial micromorphology and bond strength of adhesive systems to Er: YAG laser-irradiated dentin[J]. Lasers in medical science, 2013, 28(4): 1069-1076.
[28] Samad-Zadeh A, Harsono M, Belikov A, et al. The influence of laser-textured dentinal surface on bond strength[J]. Dental materials, 2011, 27(10): 1038-1044.