论文部分内容阅读
The Late Paleozoic Ice Age across Carboniferous and Permian had a significant impact on the Kungurian(Upper Cisuralian series of Permian) Chihsia Formation in South China. This resulted in a unique interval with features such as the lack of reef in Chihsian limestone, widespread stinkstone and nodular/bedded chert. The Chihsia limestone(Kungurian stage) deposited during a time of cooling was resulted from oceanic upwelling. Here we present evidence for this upwelling using several geochemical analyses: bulk organic carbon isotope, biomarker molecular geochemical data, and authigenic silica of the stinkstone member in the lower Chihsia Formation of the Kuangurian stage from the Enshi Section in western Hubei Province, South China. The lower part of the stinkstone member shows a rapid organic carbon isotope excursion with a-3‰ shift triggered by the upwelling of 13C-depleted bottom water. The concurrent rapid increasing of authigenic silica content resulted from the enhanced supply of dissolved silica in the upwelling water mass. This upwelling at the Enshi Section also led to relative high TOC content, accounting for the widespread stinkstone in the lower Chihsia Formation during the Kungurian stage in Permian.
The Late Paleozoic Ice Age across Carboniferous and Permian had a significant impact on the Kungurian (Upper Cisuralian series of Permian) Chihsia Formation in South China. This resulted in a unique interval with features such as the lack of reef in Chihsian limestone, widespread stinkstone and Here we present evidence for this upwelling using several geochemical analyzes: bulk organic carbon isotope, biomarker molecular geochemical data, and authigenic silica of the stinkstone member of the lower Chihsia Formation of the Kuangurian stage from the Enshi Section in western Hubei Province, South China. The lower part of the stinkstone member shows a rapid organic carbon isotope excursion with a-3 ‰ shift triggered by the upwelling of 13C -depleted bottom water. The concurrent rapid increasing of authigenic silica content resulted from the enhanced supply of dissolved silica in the upwelling water mass. This upwelling at the Enshi Section also led to relative high TOC content, accounting for the widespread stinkstone in the lower Chihsia Formation during the Kungurian stage in Permian.