论文部分内容阅读
一、求值例 1 ( 1995年全国初中数学联赛试题 )已知a、b是方程x2 +(m-2 )x +1=0的两根 ,则 ( 1+ma +a2 ) ( 1+mb +b2 )的值是( )(A) 1 (B) 2 (C) 3 (D) 4分析 由题意和韦达定理知 :a +b=2 -m ,ab=1.a2 +ma +1=a2 +(m -2 )a+1+2a
First, the evaluation example 1 (1995 national junior high school mathematics league questions) is known a, b is the two equations x2 + (m-2) x +1 = 0, then (1+ma + a2) (1+mb The value of +b2) is ()(A) 1 (B) 2 (C) 3 (D) 4 The analysis is based on the problem meaning and the Vedic theorem: a +b = 2 -m, ab = 1.a2 +ma + 1=a2 +(m -2 )a+1+2a