论文部分内容阅读
针对粒子群算法在解空间盲目搜索的缺点,提出一种基于时变适应度函数的改进粒子群路径规划算法。该算法有效地将人类搜索经验与粒子群算法相结合,利用神经网络描述环境约束和距离信息,并构造粒子的适应度函数,从而该算法在迭代过程中可以利用权值的改变合理地调整适应度函数。这样,新算法在寻优过程中能够先确定路径方向,然后逐步提高路径安全性。将该算法应用于机器人路径规划,与标准的粒子群算法相比,数值仿真结果表明,改进算法具有较强的寻优能力和实时性。