Research on the Distribution of Mersenne Primes Based on Zhou’s Conjecture

来源 :Studies in Mathematical Sciences | 被引量 : 0次 | 上传用户:maybeen
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  Address: School of Information Science and Engineering, Southeast University, Nanjing, PR. China; E-mail: [email protected]
  Received: November 14, 2013/ Accepted: January 5, 2014/ Published online:
  February 26, 2014
  Abstract: This paper presents an approximate expression of the number of Mersenne primes on the basis of Zhou’s conjecture, predicts the position of each Mersenne prime, and compares the number of Mersenne primes derived from this expression to the number of Mersenne primes derived from actual values and the four existing approximate expressions.
  Key words: Mersenne primes; Zhou’s conjecture; Distribution; Approximate expression
  Du, W. L., Shen, B., & Zhang, Y. Q. (2014). Research on the Distribution of Mersenne Primes Based on Zhou’s Conjecture. Studies in Mathematical Sciences, 8(1), -0. Available from URL: http://www.cscanada.net/index.php/sms/article/view/3976 DOI: http://dx.doi.org/10.3968/3976
  1. INTRODUCTION
  In the modern number theory, research on Mersenne primes is an important topic, although it has been investigated for over two thousand years. The grid technology has greatly improved the research on Mersenne primes, and has resulted in the discovery of the forty-eighth Mersenne prime in 2013.
  One of the important aspects to research the Mersenne prime is the study of its distribution. Many mathematicians have given their proposed conjectures on it. Regretfully, those conjectures are well have obvious deviation from the actual distribution. This paper presents an approximate expression of Mersenne primes based on the precise expression known as Zhou’s conjecture, named after Chinese mathematician Haizhong Zhou , who first proposed this conjecture in 1992.
  2. MERSENNE PRIMES AND ZHOU’S CONJECTURE
  A prime number is a natural number greater than 1, which does not have any positive divisors other than 1 and itself[1]. There are infinite prime numbers. A Mersenne prime is a prime number of the form MP=2p-1, where p is an assumed prime. They are called after the French mathematician Marin Mersenne who studied them in the early 17th century. Research on Mersenne primes is an essential topic of modern number theory. The study of Mersenne prime has been showed hot but difficult.
  The Lucas–Lehmer test is a primality test for Mersenne numbers. The test was originally developed by French mathematician Fran?ois Lucas in 1856[2], subsequently improved by Lucas in 1878 and American mathematician Derrick Lehmer in the 1930s. Lucas-Lehmer test is that , for p an odd prime, the Mersenne number 2p-1 is prime if and only if 2p-1 divides S(p ? 1) where S(p ? 1) defined by induction as S(n + 1) = (S (n))2 ? 2, and S(1) = 4. This approach is still playing an important role in computation method.   In 1952, American mathematician Raphael Robinson compiled computer program based on Lucas–Lehmer test. As of February 2013, 48 Mersenne primes are known. M25,964,951 has been found to be the 42th Mersenne prime. In modern times, the largest known prime has almost always been a Mersenne prime.
  Mersenne primes distribution is extremely irregular, which leads to the irregular time intervals to discover Mersenne primes[3]. Exploring the distribution of Mersenne primes seems to be more difficult than finding new Mersenne primes. Many fundamental questions about Mersenne primes remain unresolved. It is even unknown whether the number of Mersenne primes is finite or infinite, on which for a long time Mathematicians have made some conjectures.
  Alexander Hurwitz reported that he had applied Lucas’ test to investigate the primality of the Mersenne Numbers between 3,300 < p < 5,000 and discovered that M4253 and M4423 are prime numbers[4]. American mathematician Daniel Shanks thought that the approximate number of Mersenne primes is in the range pn ≤ p ≤ pm. So he thought there are about five Mersenne primes in the interval 500≤ p ≤50,000[3]. Actually, seven Mersenne primes was noted in that interval.
  Canadian mathematician Donald Gillies guessed that there are about two Mersenne primes when p is between x and 2x. x is a positive integer greater than one[5]. But the distribution of Mersenne primes derived from Donald Gillies’ conjecture is quite different from the actual distribution. Sometimes, none of Mersenne prime can be found between x and 3x, or even between x and 4x. For example, none of Mersenne prime exists between x and 3x when x = 22000. There is not any Mersenne prime between x and 4x when x = 128.
  American mathematician John Brillhart[3]also made a conjecture which stated that p of the n-th Mersenne primes Mp is approximately equal to (1.5)n. But the distribution of Mersenne primes derived from John Brillhart’s conjecture is still quite different from the actual distribution.
  Dutch mathematician Hendrik Lenstra and American mathematician Carl Pomerance gave a conjecture on the number of Mersenne primes in 1980 which can be repressed as the following three statements. The restated form is indicated by American mathematician Samuel S. Wagstaff in 1983[6].
  The number of Mersenne primes less than or equal to x is about , where γ is Euler’s constant.
  The expected number of Mersenne primes 2p-1 with p between x and 2x is about eγ.   The probability that 2p-1 being a prime is about where a=2 if p=3 (mod 4), and a=6 if p=1 (mod 4).
  In 1992, Haizhong Zhou gave a precise expression about Mersenne primes’ distribution[7]. This important achievement has been named as “Zhou’s conjecture”. In fact, Zhou’s conjecture is important and helpful to research the distribution of Mersenne primes.
  Zhou’s conjecture states that if 22n  3. THE MAIN RESEARCH RESULTS
  Based on Zhou’s conjecture, we can deduce that the number of Mersenne primes is , where . Until now, there are 5 data which is verified to be the actual numbers: . Our conjecture numbers are coincident with the actual numbers in these five data.
  When N is an arbitrary natural number except 1, Table 1 gives the comparison of definite numbers with the numbers of our conjecture and Lenstra and Pomerance’s conjecture.
  Table 1
  Mersenne Prime Number Forecast
  Actual numbers The exponent p Our conjecture numbers Our conjecture’s deviation L&P’s conjecture numbers L&P’s conjecture deviation
  1 2 1 0 0.8 0.2
  2 3 1.5 0.5 1.9 0.1
  3 5 2.4 0.6 3.2 -0.2
  4 7 3.1 0.9 4.1 -0.1
  5 13 4.5 0.5 5.6 -0.6
  6 17 5.2 0.8 6.3 -0.3
  7 19 5.4 1.6 6.6 0.4
  8 31 6.6 1.4 7.9 0.1
  9 61 8.3 0.7 9.6 -0.6
  10 89 9.3 0.7 10.6 -0.6
  11 107 9.8 1.2 11.1 -0.1
  12 127 10.2 1.8 11.5 0.5
  13 521 13.9 -0.9 15.1 -2.1
  14 607 14.3 -0.3 15.5 -1.5
  15 1279 16.3 -1.3 17.4 -2.4
  16 2203 17.7 -1.7 18.8 -2.8
  17 2281 17.8 -0.8 18.9 -1.9
  18 3217 18.8 -0.8 19.8 -1.8
  19 4253 19.5 -0.5 20.5 -1.5
  20 4423 19.6 0.4 20.6 -0.6
  21 9689 21.8 -0.8 22.6 -1.6
  22 9941 21.8 0.2 22.7 -0.7
  23 11213 22.2 0.8 23.0 0.0
  24 19937 23.7 0.3 24.5 -0.5
  25 21701 24.0 1.0 24.7 0.3
  26 23209 24.2 1.8 24.9 1.1
  27 44497 25.9 1.1 26.6 0.4
  28 86243 27.8 0.2 28.3 -0.3
  29 110503 28.4 0.6 28.9 0.1
  30 132049 28.9 1.1 29.4 0.6
  31 216091 30.3 0.7 30.6 0.4
  32 756839 33.8 -1.8 33.8 -1.8
  33 859433 34.1 -1.1 34.2 -1.2
  34 1257787 35.2 -1.2 35.2 -1.2
  35 1398269 35.5 -0.5 35.4 -0.4
  36 2976221 37.6 -1.6 37.4 -1.4   37 3021377 37.6 -0.6 37.4 -0.4
  38 6972593 40.0 -2.0 39.6 -1.6
  39 13466917 41.8 -2.8 41.2 -2.2
  40 20996011 43.1 -3.1 42.4 -2.4
  41 24036583 43.4 -2.4 42.7 -1.7
  42 25964951 43.6 -1.6 42.9 -0.9
  43* 30402457 44.1 -1.1 43.3 -0.3
  44* 32582657 44.3 -0.3 43.5 0.5
  45* 37156667 44.6 0.4 43.9 1.1
  46* 42643801 45.0 1.0 44.2 1.8
  47* 43112609 45.1 1.9 44.2 2.8
  48* 57885161 45.9 2.1 45.0 3.0
  Note. Our conjecture numbers:
  Our conjecture’s deviation:
  L&P’s conjecture numbers: L&P’s conjecture deviation:
  * It is uncertain that whether any undiscovered Mersenne primes exist between the 42nd (M25,964,951) and the 48th (M57,885,161) in this Table. Therefore the order is provisional.
  Theory number of our conjecture in this paper is very similar to the actual number. There are 25 numbers with deviation less than 1, but only one number of deviation greater than 3 where p is equal to 20,996,011. The first 42 numbers are determined but the last 6 numbers are undetermined. For the first 38 Mersenne primes, the maximum deviation of our conjecture is smaller than Lenstra and Pomerance’s conjecture. If there is one or more other Mersenne primes when 25,964,951  In the interval of [N1, N2], the number of Mersenne primes is where . N1 and N2 can be extended to the whole natural number, but the precision of this formula will quickly decrease with the reduction of .
  The number of Mersenne primes is
  , when 5,000≤p≤50,000. The actual number is seven . The number in this paper comes closer to the actual number than Shanks’ conjecture.
  Since the approximate number of Mersenne prime is
  n=21og2N-log2log2N-1, then 2log2N=n+1+log2log2N, hence . According to, p of the nth Mersenne prime is . Actual values of p are compared with the values in our conjecture and Brillhart’s conjecture showed in Table 2.
  Table 2
  Values of p for n-th Mersenne Primes
  Number The exponent p Our conjecture Our conjecture’s ratio Brillhart’s conjecture value Brillhart’s conjecture Ratio
  1 2 2 1.0 1.5 1.3
  2 3 3 1.0 2 1.5   3 5 6 0.8 3 1.7
  4 7 9 0.8 5 1.4
  5 13 14 0.9 8 1.6
  6 17 21 0.8 11 1.5
  7 19 32 0.6 17 1.1
  8 31 48 0.6 26 1.2
  9 61 72 0.8 38 1.6
  10 89 106 0.8 58 1.5
  11 107 157 0.7 86 1.2
  12 127 231 0.5 130 1.0
  13 521 339 1.5 195 2.7
  14 607 496 1.2 292 2.1
  15 1279 724 1.8 438 2.9
  16 2203 1056 2.1 657 3.4
  17 2281 1536 1.5 985 2.3
  18 3217 2232 1.4 1478 2.2
  19 4253 3238 1.3 2217 1.9
  20 4423 4693 0.9 3325 1.3
  21 9689 6792 1.4 4988 1.9
  22 9941 9822 1.0 7482 1.3
  23 11213 14189 0.8 11223 1.0
  24 19937 20480 1.0 16834 1.2
  25 21701 29537 0.7 25251 0.9
  26 23209 42566 0.5 37877 0.6
  27 44497 61303 0.7 56815 0.8
  28 86243 88231 1.0 85223 1.0
  29 110503 126910 0.9 127834 0.9
  30 132049 182445 0.7 191751 0.7
  31 216091 262144 0.8 287627 0.8
  32 756839 376476 2.0 431440 1.8
  33 859433 540424 1.6 647160 1.3
  34 1257787 775432 1.6 970740 1.3
  35 1398269 1112183 1.3 1456110 1.0
  36 2976221 1594560 1.9 2184164 1.4
  37 3021377 2285318 1.3 3276247 0.9
  38 6972593 3274178 2.1 4914370 1.4
  39 13466917 4689375 2.9 7371555 1.8
  40 20996011 6714162 3.1 11057332 1.9
  41 24036583 9610358 2.5 16585998 1.4
  42 25964951 13751945 1.9 24878998 1.0
  43* 30402457 19673030 1.5 37318497 0.8
  44* 32582657 28136247 1.2 55977745 0.6
  45* 37156667 40230350 0.9 83966617 0.4
  46* 42643801 57509400 0.7 125949930 0.3
  47* 43112609 82191237 0.5 188924890 0.2
  48* 57885161 117440510 0.5 283387330 0.2
  Note. Our conjecture: Our conjecture ratio :
  Brillhart’s conjecture value : (1.5)n Brillhart’s conjecture ratio :
  Values in this paper and Brillhart’s conjecture have a certain gap with the actual values. Conjecture values are not more than the twice of actual values most of the time. Actual values are most 2.1 times of the conjecture values in this paper when p ≤ 6,972,593. Actual values are right on most 3.4 times of the Brillhart’s conjecture values. The first 42 ratios have been determined and the last 6 ratio are undetermined. If there is no other Mersenne prime when p < 57,885,161, Brillhart’s conjecture values are at most 5 times than actual values for the last 10 Mersenne primes. Nonetheless, actual values are at most 3.1 times than conjecture values in this paper. If there is one or more other Mersenne primes when p < 57,885,161, Brillhart’s conjecture values are at most 8 times than actual values for the last 10 Mersenne primes. But actual values are still at most 3.1 times than conjecture values in this paper.   From the above deducing, we can gauss that there are 2 Mersenne primes in average when x ≤ p ≤ 2x where x is large. Actually, sometimes, there is no Mersenne prime between x and 2x. But sometimes there are more than one Mersenne prime. For example, seven Mersenne primes exist at least when x is 24,036,583. When x is smaller, the average of Mersenne primes number is less than 2 between x and 2x.
  The probability that MN is a Mersenne prime is
  .
  So the probability that Mp is a Mersenne prime is
  .
  4. SUMMARY
  It is difficult to find the pattern of Mersenne primes because the distribution of Mersenne primes is very irregular. Based on Zhou’s conjecture, this paper uses formula-transformation method, and derives the approximated expression of Mersenne primes. The numbers of Mersenne primes estimated by this expression are much nearer to the actual numbers than the numbers estimated by Lenstra and Pomerance. The position of each Mersenne prime is also of the view by this expression and the results are better than the estimation in Brillharts’ conjecture. The results in this paper are closer to the actual value than Shanks and Gillies’ conjecture.
  REFERENCES
  Zhang, S. B., & Chen, X. M. (2013). Mersenne primes and Zhou’s conjecture. Science & Technology Review, 31(3), 84.
  Lehmer, D. H. (1935). On Lucas’test for primality of Mersenne’s numbers. J. of the London Math. Soc., 10, 162-165.
  Zhang S. B. (2008). Review of research on Mersenne primes. Science & Technology Review, 26(18), 88-92.
  Hurwitz, A. (1962). New Mersenne primes. Math.Comp, 16, 249-251.
  Gillies, D. B. (1964). Three new Mersenne primes and a statistical theory. Math Comp, 18, 93-97.
  Wagstaff, S. S. (1983). Divisors of Mersenne numbers. Math Comp, 40, 385-397.
  Zhou, H. Z. (1992). The distribution of Mersenne primes. Acta Scientiarum Naturalicm Universitatis Sunyatseni, 31(4), 121-122.
其他文献
人人都想扼住命运的咽喉,现实却是被命运拿捏者众!  于是乎心中生出感慨:我命由天不由我。  有时候,我们需要换一个角度审视命运。  这芸芸众生,能逆天行运,引领时代潮流的毕竟只是少数幸运儿。但当时代的浪潮汹涌而至时,至少让我们有勇气去拥抱它。  在人类历史的时间轴上,总有一些点格外特殊,如同打开了神奇的虫洞,所有的际遇都在这个点上被集中触发,于是乎成为历史的分水岭。  比如1776年,亚当斯密出版
期刊
今年10月,上海有媒体发布了一条新闻,名为“无畏挑战 勇往职前”的2022届上海高校毕业生秋季校园招聘会在临港新片区举行。  2022届应届生是真正意义第一批毕业的“00后”大学生,新闻里说,尽管当天风大雨大,现场依旧拥入了14 000余名应届学子。  包括中国商飞、上汽通用、上港集团、上海电气集团、上海医药集团等980家用人单位均进场招聘,提供岗位2 800余个,招聘需求达25 000多人。  
期刊
[摘 要]数学作业不仅在考核,巩固和扩大学生的课堂学习效果方面发挥着重要作用,而且还是培养学生独立思考和发散思维的重要途径。为了提高数学作业设计和批改的有效性,教师必须有针对性地设计和批改数学作业,探索出一套行之有效的方法和策略。  [关键词] 初中数学 ;作业设计与批改;有效性  初中数学是一门研究数量关系和空间形式的学科。它具有非常抽象,逻辑严密,应用广泛的特点。因此,单靠课堂上数学知识的学习
期刊
[摘 要]微视频技术的成熟,以及微视频相关设备的不断普及,都为现代教育更好的发挥价值的价值、引导学生进行高质量的学习提供了有效的帮助。在现代初中物理教学的过程中,我认为,为了进一步提升教学的质量,帮助学生对物理知识有更加深刻的理解和掌握,我们在教学都过程中可以多尝试利用微视频来进行物理教学内容的解释,帮助学生对知识有更加深刻的理解和掌握,具体的教学过程中,初中物理如何真正的发挥好微视频的价值是我们
期刊
[摘 要]小学语文教学的课堂有效性是小学语文教学的根本要求,从目前小学语文教学的总体情况来看,由于小学语文教师的自身条件和客观条件限制,课堂教学的有效性普遍不高。本文通过二十多年语文教学经验的总结,对小学语文教学的课堂有效性提出了见解。  [关键词]转变观念;解读教材;充满激情;发挥作用  语文课堂教学的有效性是语文教学的生命,而这生命能否得以延续,取决于教师是否能充分发掘学生的兴趣点,调动学生学
期刊
7.9 中信银行上海分行与上海市担保行业协会签订了150亿元的授信战略合作协议。这是继去年签订100亿元授信协议后的再一次深度合作。  7.10 台湾规模最大的银行——台湾银行在上海为其首个大陆分行举行开业庆典。  7.10 国泰君安证券“个人投资者投资景气指数”(IndividualInvestment Index,简称“3I指数”)正式发布。作为月度指数,3I指数将通过对海量个人投资者真实投资
期刊
[摘 要]高校辅导员是当代大学生的灵魂工程师,与学生关系最为密切,直接关系大学生创业教育能否有效开展。本文从高校辅导员开展大学生创业教育的可行性分析入手,着重探索辅导员促进创业教育的有效途径: “全面提升高校辅导员创业教育技能”、“加强高校辅导员对大学生创业思维及技能的引导与培养”、“积极营造校园创业教育文化氛围”、“做好创业教育向专业教育渗透及两者融合的桥梁”以及“指导大学生进行电商创业”。  
期刊
[摘 要]多媒体技术的广泛应用给幼儿园课堂教学带来的益处是毋需质疑的。目前,课件制作非常热门,那么,什么样的课件孩子会喜欢呢?这就值得我们去思考与探讨。实践证明,一个孩子喜欢的多媒体课件就像一本由图文声像组成的视频片段,必需融教育性、艺术性、交互性于一体,操作简洁、易于使用。那么,我们只有迎浪而上,不断探讨、努力研究,才能跟上时代的步伐,制作出更具动感和趣味性,吸引幼儿眼球的课件,促进幼儿对知识的
期刊
[摘 要]本文主要陈述分层教学在初中英语中实施的目的和意义,探讨分层教学的理论和科学依据,提出了根据分层教学法得出的初中英语教学创新办法,以及如何全面提升初中英语的教学水准。  [关键词]分层教学;应用;初中英语  一、实施初中英语分层教学的意义与目的  初中生因为个体之间存在着差异,他们的学习目标、学习办法、智力水平以及成长所处的不同环境都不相同。如果还是采取常见的“一锅煮”的教学模式就会忽视学
期刊
王小川终究还是选择“抛弃”相濡以沫十数载的“老婆”?  2017年11月9日,搜狗在纽交所挂牌上市,CEO王小川携母亲洒泪敲钟现场。那一刻,王小川感慨的不仅是市场对他工作的认可,或许还有几分对催婚的恐惧。  不知为何,业内一直有搜狗“不上市(王小川)就不结婚”的传言,面对为自己终身大事操心的群众,王小川本人淡淡然地表示:“搜狗就是我老婆。”  然而伴随着腾讯宣布合并搜狗,王小川也告别了这家自己一手
期刊