论文部分内容阅读
结合现有基于卷积神经网络的图像分类算法,以CIFAR-10作为数据集,探究如何快速搭建一个满足分类精度要求的卷积神经网络模型,以及如何有目的且高效地进行网络训练与参数调整。实验以简单的三层卷积神经网络为基础,从数据增强、网络结构与优化训练3个方面对模型进行改进。实验结果表明,通过叠加这些改进方法,可使模型的拟合能力与泛化能力逐渐增强,最终获得更高的图像分类准确率。