论文部分内容阅读
研究了使用二维Gabor小波变换和DCT离散余弦变换实现人脸特征提取并使用BP神经网络进行表情分类识别的方法。首先,将人脸图像经过归一化预处理,然后经过二维Gabor变换生成不同尺度和方向下的特征向量,为了降低其维数,使用DCT离散余弦变换对其进行压缩,提取最终的表情特征向量。为了提高BP神经网络对表情的分类精度和减少训练时间,使用改进的粒子群算法PSO来优化BP神经网络的各权值和阀值。仿真结果表明:使用Gabor小波变换并经DCT进行压缩后得到的特征向量,在经过粒子群优化的BP神经网络进行训练后,