论文部分内容阅读
以KOH为催化剂,实现了1,3,5-三甲基-1,3,5-三(3,3,3-氟丙基)环三硅氧烷(DF3)和N-β-氨乙基-γ-氨丙基甲基二甲氧基硅烷(APAEDMS)的本体聚合,得到了侧链含(3,3,3-三氟丙基)和N-β-氨乙基-γ-氨丙基的聚甲基硅氧烷(FASO),并以其为低能物质,结合凝胶-溶胶法将普通棉织物构筑为接触角为156°的超疏水织物。红外光谱(IR)和核磁共振(1 H-NMR)分析表明FASO具有预期的化学结构,处理前后织物表面SEM和疏水性分析表明:织物自身具有的微米尺度二维粗糙度和FASO修饰所形成的低能表面是织物变疏水的主要原因,纳米SiO2在纤维束表面构建的纳米尺度粗糙度,可将水在纤维-水接触面间所占分率由34.7%降低到10%,接触角由134.5°提高到156°。最后,用X-射线光电子能谱(XPS)对超疏水织物的表面成分进行了分析。
With KOH as catalyst, 1,3,5-trimethyl-1,3,5-tris (3,3,3-fluoropropyl) cyclotrisiloxane (DF3) and N-β- Γ-aminopropylmethyldimethoxysilane (APAEDMS) was polymerized to obtain a monomer mixture containing (3,3,3-trifluoropropyl) and N-β-aminoethyl-γ- Propyl polymethylsiloxane (FASO), and using it as a low-energy material, combined with gel-sol method ordinary cotton fabric constructed with a contact angle of 156 ° superhydrophobic fabric. The results of IR and 1H-NMR show that FASO has the expected chemical structure. SEM and hydrophobicity analysis of the fabric surface before and after treatment show that the fabric itself has the two-dimensional microscale roughness and FASO modification The low energy surface is the main reason for the fabric to become hydrophobic. The nano-scale roughness of nano-SiO2 on the surface of the fiber bundle can reduce the water fraction from 34.7% to 10% and the contact angle from 134.5 ° Increase to 156 °. Finally, the surface composition of superhydrophobic fabrics was analyzed by X-ray photoelectron spectroscopy (XPS).