【摘 要】
:
整体思想是一种实用型的思想方法,在义务教育阶段的数学解题中占据重要地位,是贯穿初中数学领域学习的主线之一.同时是后续高中数学学习的核心内容,因此,整体思想一直是中考
论文部分内容阅读
整体思想是一种实用型的思想方法,在义务教育阶段的数学解题中占据重要地位,是贯穿初中数学领域学习的主线之一.同时是后续高中数学学习的核心内容,因此,整体思想一直是中考命题的重点,也是一线数学教师潜心研究的必修功课.研究试题的方式多种多样,其中最直接的方式就是精选典型例题进行考查,并在解题教学中揭示.所谓整体思想,即在解题中不拘泥于常规思路,用集中的眼光看待研究对象的一个部分或全部,将其视为一个整体,充分把握条件与问题间千丝万缕的联系,进而有目的地整体化处理问题,使问题化繁为简.
其他文献
面对突如其来的疫情,教育部提出"停课不停学"的倡议,各省、市通过空中课堂等网络手段,为当地学生提供了免费、优质的在线教育服务.其间笔者受邀在市级电视台为广大学生开设了
数学思想方法是数学知识的精髓,也是体现数学能力的重要组成部分.《义务教育数学课程标准(2011年版)》中指出:"在教学中,应当引导学生在学好概念的基础上掌握数学的规律(包括
最近几年,全国多地中考试卷中出现了“平移抛物线求弧扫过的面积”问题.由于其综合性较强,对学生的数学思维产生了巨大考验,所以很多学生在这方面失分.这样的题目具有一定创
富顺县位于川南地区,是曲型浅丘地形,沱江由北向南从其境内穿过,全县有120余万人口。县城居民饮用水从40km的水库引用,乡镇的饮用水源多是从沱江的支流小河中摄取,农户、学校等多
两条角平分线的夹角问题主要包括三种类型:两条内角平分线的夹角,一条内角平分线与一条外角平分线的夹角,两条外角平分线的夹角.根据三角形内角和及角平分线定义,可得三角形
《义务教育数学课程标准(2011年版)》(以下简称《课标(2011年版)》)非常重视数学实验教学,其中12次提到"实验".如《课标(2011年版)》在"课程基本理念"中指出"学生应当有足够
目的 观察不同浓度的番茄红素独用和与维生素E联用时对人胚肺二倍体细胞中抗氧化酶的影响.方法 处于对数生长期的人胚肺二倍体细胞(SL-7细胞),加入不同浓度的番茄红素和维生