论文部分内容阅读
异常驾驶行为的识别对交通安全起着至关重要的作用,准确识别异常驾驶行为能够显著提高驾驶安全。目前,针对车辆行驶过程中的异常驾驶行为,如急加速、急减速、突然左转或右转等的检测识别,主要采用视频监控或聚类的方法完成。在这两种方法中,前者的实际效果受到应用场景的制约,而后者则不能针对具体的单个车辆进行驾驶行为识别。针对以上问题,使用一种基于双向长短记忆网络(Bi-LSTM)及全连接神经网络(FC)的拓展神经网络检测模型,该模型能有效利用行车数据在时间序列上发生突变时的特征,提高异常驾驶行识别准确率。将车辆行