论文部分内容阅读
2004年高考有全国卷I、全国卷Ⅱ、全国卷Ⅲ、全国卷Ⅳ,还有北京、天津、上海、辽宁、江苏、浙江、福建、湖南、湖北、重庆、广东、广西等省或直辖市单独命题.每一套题中的解答题不仅都有解析几何题,而且都处于最后两题的位置,其中全国卷I、全国卷Ⅱ、全国卷Ⅲ、全国卷Ⅳ、浙江卷、福建卷、湖北卷的解析几何答题不约而同考查了求参数或变量的取值范围.实际上在历年高考试题中经常出现求参数或变量的取值范围。它不仅涉及知识面广、综合性大、隐蔽性强,而且能很好地考查学生的综合能力和数学素养,但大多数学生理不清思路,建不了关系式(函数关系或不等关系).本文就以2004年高考中出现的解析几何题为例谈谈解析几何中范围问题的常见解法.
The national college entrance examination in 2004 includes national volume I, national volume II, national volume III, national volume IV, and separate provinces or municipalities such as Beijing, Tianjin, Shanghai, Liaoning, Jiangsu, Zhejiang, Fujian, Hunan, Hubei, Chongqing, Guangdong, and Guangxi. Propositions. The answer questions in each set of questions not only have analytic geometry problems, but also are in the final two positions, including National Vol. I, National Vol. II, National Vol. III, National Vol. IV, Zhejiang Vol., Fujian Vol., and Hubei. The analytic geometry of the volume is invariably examined for the range of values of the parameters or variables. In fact, the range of values of the parameters or variables often appears in the high test questions of the calendar year. It not only involves a wide range of knowledge, comprehensive, and concealed, but also can well examine the students’ comprehensive ability and mathematics literacy, but most students can not understand the ideas, can not build a relationship (function relationship or inequality). In this paper, the common solution to the range problem in analytic geometry is discussed with the example of the analytical geometry in the 2004 college entrance examination.