论文部分内容阅读
Experiments were conducted to investigate the forced convective heat transfer and flow friction of turbulent airflow in a rectangular duct with cross-ribs attached at the two principal walls in the Reynolds number range from 5000 to 40000. The effect of the rib cross angle (45° 60° 75° and the height (4 mm, 5 mm) of the cross-ribs on the forced convection and flow friction were tested. Non-dimensional correlations for the duct average Nusselt number and friction factor of cross-ribs duct were developed from the test data. Experiments were also conducted for the corresponding parallel ribs to compare their relative performance. The experimental results show that both of the convective heat transfer coefficient and friction factor were increased with cross-ribs, with 45°cross-ribs being the best. Compared with parallel ribs normal to the flow direction under identical flow rate and identical pumping power constraints, the cross-ribs can enhance heat transfer in the lower Reynolds number region, while i
Experiments were conducted to investigate the forced convective heat transfer and flow friction of turbulent airflow in a rectangular duct with cross-ribs attached at the two principal walls in the Reynolds number range from 5000 to 40000. The effect of the rib cross angle (45 ° 60 ° 75 ° and the height (4 mm, 5 mm) of the cross-ribs on the forced convection and flow friction were tested. Non-dimensional correlations for the duct average Nusselt number and friction factor of cross-ribs duct were developed from the experimental results show that both of the convective heat transfer coefficient and friction factor were increased with cross-ribs, with 45 ° cross-ribs being the best . Compared with parallel ribs normal to the flow direction under identical flow rate and identical pumping power constraints, the cross-ribs can enhance heat transfer in the lower Reynolds num ber region, while i