论文部分内容阅读
随着机器学习在日常生活中的各种a应用,各种机器学习方法融汇、合并、升级。深度强化学习是近年来人工智能领域最受关注的研究方向之一,本质是使用强化学习的试错算法和累计奖励函数加速神经网络设计。笔者所探讨的强化学习是一种融合了神经网络和Q-learning的方法,为深度Q网络(DeepQNetwork,DQN)这种新型结构适提供迷宫寻路,通过训练达到一个预期收敛效果。