论文部分内容阅读
【中国分类法】C43
“数学在本质上研究抽象的东西,数学发展以来的最重要的基本思想也就是抽象”。这说明数学抽象性是数学的本质特征之一。而符号、公式以及必要的形式化的处理等成为数学内容组织呈现的基本方式,也是数学课程内容不同于其他学科课程内容的特点所在,这就决定了数学教育应把发展学生的抽象思维能力作为其目标。七年级绝对值概念是集几何直观、图形符号、字母符号数字符号、和特定符号于一体的数学内容,具有非常典型的抽象性,学习绝对值,可以帮助学生体会用字母表示数的意义,而用字母表示数是一种重要的数学思想,七年级学生对数学中的符号语言刚刚接触,学习时理解很困难。绝对值知识涉及数学学科的分类讨论思想,数形结合的思想,这些对七年级学生都是重点与难点。因此本节内容在初中数学中乃至于今后的数学学习中占有重要的地位。研究这一部分知识的呈现方式、概念的生成、结构的形成,对于教师教育教学方法的运用,教学环节的设计工作起着决定性的作用。
北师大版的教材和人教版教材是全国范围内使用较为广泛的两个版本,将这两个具有代表性的版本进行比较,是希望通过两者理念、经验方面的碰撞,达到相互借鉴、取长补短的目的,为教师教学资源的选择以及教学设计工作提供参考和建议。
一、两版本教材比较
(一)相同点
1.内容安排位置大致相同
《绝对值》是在引入有理数和数轴以及相反数等基本概念后又一探究、学习的重要内容,一方面,数轴的概念、画法、利用数轴比较数的大小及相反数的概念为本节内容奠定了基础;而另一方面,在有理数运算以及后面根式内容中,都是以绝对值的知识为基础的,因此绝对值的知识起着承上启下的作用,是对数的扩充后相关概念的完备与补充为后续的研究提供条件。两个版本均将这部分内容置于绝对值都安排在相反数和加减法之间。
2.两版本教科书呈现“绝对值及其含义”的路径基本一致
北师大版呈现“绝对值及其含义 ”的路径:
生活中的距离问题→文字语言描述绝对值定义→绝对值的符号语言→用文字语言表述绝对值的代数含义。
人教A版呈现“函数及其含义”的路径:
卡通形象的距离问题→借助字母描述绝对值定义→绝对值的符号语言→用文字语言归纳绝对值的代数含义→绝对值代数含义的符号语言。
3.情境引入问题的设计理念大致相同
北师大版与人教版都是借助从实际生活情境中行驶问题抽象出的数轴关注点与点的距离这一核心概念。这样的处理体现出这两个版本的编者运用直观手段本身来进行数学研究的理念。
(二)两版本的不同点
1.绝对值的定义表述不同
北师大版中的绝对值定义:“在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值”;人教版中的绝对值定义:“一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值”。北师大版对绝对值定义的表述简洁、直接,而人教版的定义表述借助字母a这一符号化的表示来定义绝对值,定义中有明确的对象,并且是这一字母具有实际的取值范围,便于师生、生生的表达,交流。
2.绝对值的符号化表示的过程、举例不同
北师版中:“+2的绝对值等于2,记作∣+2∣=2,-3的绝对值等于3,记作∣-3∣=3”,直接将绝对值的文字语言转化为符号语言,—正、一负两个数的绝对值,应用绝对值的几何含义求出例题中各数的绝对值,并考虑“一个数的绝对值与这个数有什么关系”,由此归纳出绝对值的分类情况。人教版利用绝对值的定义直接将数a的绝对值符号化,并且继续列举如下:“A、B两点分别表示10和-10,它们与原点的距离都是10个单位长度,所以10和-10的绝对值都是10,即∣10∣=10,∣-10∣=10。显然∣0∣=0”。“数学知识的形成依赖于直观”,[6]运用绝对值的较为直观的几何含义分别求出这三个数的绝对值,在此基础上直接将文字语言符号化,经历了两次抽象的过程,第一次运用绝对值的几何含义得到各数的绝对值并用文字语言表述,第二次将绝对值的文字语言符号化表示出来。这样的过程增加了概念中的直观性与抽象性直接的联系与转化,“就数学而言,直观与抽象不是对立的,它们从来都是它的双翼”,突出了概念的双向性,加深了学生对于绝对值概念的理解和掌握。符合“通过数形结合的方法实现抽象与具体之间的转化”的原则。七年级学生对数学中的符号语言刚刚接触,学习时理解很困难,建议北师版教材设计时,突出概念的几何含义,在学生的深刻理解绝对值的几何含义后,再利用概念的几何含义求数的绝对值。
3.绝对值的代数含义探索及归纳过程不同
北师大以一正一负两个数为例,在此基础上提出思考“互为相反数的两个数的绝对值有什么关系?”,用具有较为一般性的例子,再指向具有特殊性的两个互为相反数的绝对值的代数含义的探究,接着以求两负一正,及0等四个数的绝对值,在经历了一个思考一道例题的探求过程后,提出“一个数的绝对值与这个数有什么关系?”的讨论,归纳出绝对值的代数含义。人教版在经历一对相反数+10、-10的绝对值的表示及结果后,直接归纳出绝对值的代数含义,此过程没有太多的过程与练习,寥寥数语就得出绝对值的代数含义,整个过程简短,学生对数学知识的掌握也要经历量变到质变的过程,建议教学时解决练习1后再归纳绝对值的代数含义。
4.绝对值的代数含义表述不同
北师大版只用文字语言表述,而人教版除了用文字语言表述外还将性质用字母和绝对值的符号语言分类表示出来。课标中关于绝对值知识中对|a|的教学要求是“知道|a|的含义”,实际上|a|有几何与代数两种含义,而文字层面和符号层面的两种“知道”不是同一认知水平上的,人教版的教材安排不仅用文字语言表述了代数含义,还将其抽象为符号语言的表述,旨在发展和提高学生的理解能力和抽象思维能力,符合课标对该学段学生的能力目标的要求。这一部分,北师大版有意识将绝对值这一较抽象的知识简单化,尽可能贴近七年级学生的思维水平。建议教授北师版时增加绝对值代数含义的符号化表示。
每套教科书在编写时都体现出了自己独特的教育理念,都具有其独特的示范性、启发性,任何一套教科书都不可能适合每一位教师或每一位学生,教学并不是为了教教材而教,教师创造性地使用教材,取长补短,才会使自己的教学更加科学,更加适合每一位学生的学习。
“数学在本质上研究抽象的东西,数学发展以来的最重要的基本思想也就是抽象”。这说明数学抽象性是数学的本质特征之一。而符号、公式以及必要的形式化的处理等成为数学内容组织呈现的基本方式,也是数学课程内容不同于其他学科课程内容的特点所在,这就决定了数学教育应把发展学生的抽象思维能力作为其目标。七年级绝对值概念是集几何直观、图形符号、字母符号数字符号、和特定符号于一体的数学内容,具有非常典型的抽象性,学习绝对值,可以帮助学生体会用字母表示数的意义,而用字母表示数是一种重要的数学思想,七年级学生对数学中的符号语言刚刚接触,学习时理解很困难。绝对值知识涉及数学学科的分类讨论思想,数形结合的思想,这些对七年级学生都是重点与难点。因此本节内容在初中数学中乃至于今后的数学学习中占有重要的地位。研究这一部分知识的呈现方式、概念的生成、结构的形成,对于教师教育教学方法的运用,教学环节的设计工作起着决定性的作用。
北师大版的教材和人教版教材是全国范围内使用较为广泛的两个版本,将这两个具有代表性的版本进行比较,是希望通过两者理念、经验方面的碰撞,达到相互借鉴、取长补短的目的,为教师教学资源的选择以及教学设计工作提供参考和建议。
一、两版本教材比较
(一)相同点
1.内容安排位置大致相同
《绝对值》是在引入有理数和数轴以及相反数等基本概念后又一探究、学习的重要内容,一方面,数轴的概念、画法、利用数轴比较数的大小及相反数的概念为本节内容奠定了基础;而另一方面,在有理数运算以及后面根式内容中,都是以绝对值的知识为基础的,因此绝对值的知识起着承上启下的作用,是对数的扩充后相关概念的完备与补充为后续的研究提供条件。两个版本均将这部分内容置于绝对值都安排在相反数和加减法之间。
2.两版本教科书呈现“绝对值及其含义”的路径基本一致
北师大版呈现“绝对值及其含义 ”的路径:
生活中的距离问题→文字语言描述绝对值定义→绝对值的符号语言→用文字语言表述绝对值的代数含义。
人教A版呈现“函数及其含义”的路径:
卡通形象的距离问题→借助字母描述绝对值定义→绝对值的符号语言→用文字语言归纳绝对值的代数含义→绝对值代数含义的符号语言。
3.情境引入问题的设计理念大致相同
北师大版与人教版都是借助从实际生活情境中行驶问题抽象出的数轴关注点与点的距离这一核心概念。这样的处理体现出这两个版本的编者运用直观手段本身来进行数学研究的理念。
(二)两版本的不同点
1.绝对值的定义表述不同
北师大版中的绝对值定义:“在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值”;人教版中的绝对值定义:“一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值”。北师大版对绝对值定义的表述简洁、直接,而人教版的定义表述借助字母a这一符号化的表示来定义绝对值,定义中有明确的对象,并且是这一字母具有实际的取值范围,便于师生、生生的表达,交流。
2.绝对值的符号化表示的过程、举例不同
北师版中:“+2的绝对值等于2,记作∣+2∣=2,-3的绝对值等于3,记作∣-3∣=3”,直接将绝对值的文字语言转化为符号语言,—正、一负两个数的绝对值,应用绝对值的几何含义求出例题中各数的绝对值,并考虑“一个数的绝对值与这个数有什么关系”,由此归纳出绝对值的分类情况。人教版利用绝对值的定义直接将数a的绝对值符号化,并且继续列举如下:“A、B两点分别表示10和-10,它们与原点的距离都是10个单位长度,所以10和-10的绝对值都是10,即∣10∣=10,∣-10∣=10。显然∣0∣=0”。“数学知识的形成依赖于直观”,[6]运用绝对值的较为直观的几何含义分别求出这三个数的绝对值,在此基础上直接将文字语言符号化,经历了两次抽象的过程,第一次运用绝对值的几何含义得到各数的绝对值并用文字语言表述,第二次将绝对值的文字语言符号化表示出来。这样的过程增加了概念中的直观性与抽象性直接的联系与转化,“就数学而言,直观与抽象不是对立的,它们从来都是它的双翼”,突出了概念的双向性,加深了学生对于绝对值概念的理解和掌握。符合“通过数形结合的方法实现抽象与具体之间的转化”的原则。七年级学生对数学中的符号语言刚刚接触,学习时理解很困难,建议北师版教材设计时,突出概念的几何含义,在学生的深刻理解绝对值的几何含义后,再利用概念的几何含义求数的绝对值。
3.绝对值的代数含义探索及归纳过程不同
北师大以一正一负两个数为例,在此基础上提出思考“互为相反数的两个数的绝对值有什么关系?”,用具有较为一般性的例子,再指向具有特殊性的两个互为相反数的绝对值的代数含义的探究,接着以求两负一正,及0等四个数的绝对值,在经历了一个思考一道例题的探求过程后,提出“一个数的绝对值与这个数有什么关系?”的讨论,归纳出绝对值的代数含义。人教版在经历一对相反数+10、-10的绝对值的表示及结果后,直接归纳出绝对值的代数含义,此过程没有太多的过程与练习,寥寥数语就得出绝对值的代数含义,整个过程简短,学生对数学知识的掌握也要经历量变到质变的过程,建议教学时解决练习1后再归纳绝对值的代数含义。
4.绝对值的代数含义表述不同
北师大版只用文字语言表述,而人教版除了用文字语言表述外还将性质用字母和绝对值的符号语言分类表示出来。课标中关于绝对值知识中对|a|的教学要求是“知道|a|的含义”,实际上|a|有几何与代数两种含义,而文字层面和符号层面的两种“知道”不是同一认知水平上的,人教版的教材安排不仅用文字语言表述了代数含义,还将其抽象为符号语言的表述,旨在发展和提高学生的理解能力和抽象思维能力,符合课标对该学段学生的能力目标的要求。这一部分,北师大版有意识将绝对值这一较抽象的知识简单化,尽可能贴近七年级学生的思维水平。建议教授北师版时增加绝对值代数含义的符号化表示。
每套教科书在编写时都体现出了自己独特的教育理念,都具有其独特的示范性、启发性,任何一套教科书都不可能适合每一位教师或每一位学生,教学并不是为了教教材而教,教师创造性地使用教材,取长补短,才会使自己的教学更加科学,更加适合每一位学生的学习。