论文部分内容阅读
选择广东省215个村镇稻田的土壤样本,首先利用ASD Field Spec3测量土壤样本在350~2 500 nm的光谱,并采用S-G一阶导数平滑滤波降低样本测量中光照差异的影响,然后将遗传算法(Genetic Algorithm,GA)和支持向量机分类(Support Vector Machine,SVM)分别用于提取分类光谱特征和建立分类模型,分别在土纲、亚纲、土类3个层次进行土壤分类。结果表明:1)在不同的分类层次下,与铁氧化物密切相关的650~710以及900 nm附近光谱,与羟基矿物吸收有