基于多尺度复合金字塔模型的缓存策略研究

来源 :计算机技术与发展 | 被引量 : 0次 | 上传用户:degr5
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了解决多源异构数据具有的统一组织和集成管理问题,提出了一种基于多尺度复合金字塔模型的数据组织方法.同时,针对海量瓦片数据传输给服务器和网络带来的压力过大、响应时间过长的问题,通过在客户端建立缓存机制和瓦片缓存索引,提出了一种基于多尺度复合金字塔模型的瓦片数据缓存替换算法MCPCR.该算法在传统缓存置换算法的基础上,适用于加载多类型数据,并综合考虑了用户操作习惯以及引入了瓦片保护机制.以北京市大气污染PM2.5数据、风场数据及影像数据为例,与传统缓存置换算法进行对比.实验结果证明,多尺度复合金字塔模型能够实现对瓦片数据的统一组织和集成管理,基于多尺度复合金字塔模型的瓦片数据缓存替换算法能够对多种类型数据进行加载,相对于传统缓存置换算法可以提高瓦片命中率及字节命中率,提高用户响应速度.
其他文献
针对炼油厂浮渣油泥(简称“浮渣油泥”)含有大量油污、成分复杂且较难处理等问题,采用超声波法对中国石化南京金陵分公司炼油厂产生的浮渣油泥进行预处理试验,通过L16(44)正交试验法分析超声功率、超声温度、超声时间、超声频次对浮渣油泥除油率的影响,利用SPSS 25.0进行误差分析,并运用单因素试验细化正交试验影响因素,通过红外光谱法、扫描电镜、能谱分析等手段表征超声前后油泥物性的变化特征.结果 表明:超声波法工艺参数影响的大小顺序为超声功率<超声时间<超声温度<超声频次,当超声功率60 W、超声时间10 m
知识库问答任务是自然语言处理领域中的研究热点之一,目前国内外学者对知识库问答方法的研究大多数是基于英文数据,基于中文数据的研究非常少.由于中文存在语言多变性、语法不明确性、语言歧义性等特点,导致很多英文知识库问答研究方法很难应用于中文数据.针对以上问题,该文提出一种基于信息匹配的中文知识库问答研究方法,探索方法在中文数据上的效果.首先对问题进行主语实体识别和属性值识别;其次将问句中的实体链接到知识库中的实体,使用逻辑回归对候选实体进行筛选;再次抽取其两跳内关系作为候选查询路径,将候选查询路径和问题进行相似
人脑活动是在秒级与毫秒级动态变化的,因此采用静态连接方式构建的功能性脑网络,会造成部分与时间相关有效特征的缺失.该文旨在研究情绪变化期间不同大脑区域之间相互作用的时空变化,提出了一个系统的分析框架.该框架包括相关性度量,脑状态分割,代表性时间片段提取以及动态网络构建和分析.首先,利用皮尔逊相关系数量化不同脑区之间的功能连通性.其次,计算两相邻时间点的相关性矩阵之间的奇异值分解(singular value decomposition,SVD)矢量空间距离,确定情绪转换点并对非平稳脑状态进行时间片分割,提取
快速拓展随机树算法(RRT)在机械臂路径规划中存在随机性强、搜索效率低、规划路径长等问题,不能在货柜堆垛场景中取得相对最优的光滑路径.对此,该文提出了一种改进RRT-人工势场法混合算法进行货柜堆垛机械臂运动规划.首先,对传统快速拓展随机树算法进行改进,在传统快速拓展随机树算法的全局搜索的基础上引入目标搜索,增强了随机树的搜索效率,并使用改进后的算法进行全局路径规划;其次,对人工势场法进行改进,通过使用斥力势场范围大小作为阈值修正引力函数,使用机械臂末端执行器至末位置点影响修正斥力函数,并使用改进的人工势场
针对传统铁路异物检测方法中实时性不高、检测精度不够的问题,提出一种基于YOLOv3网络的高铁异物入侵的检测算法.为提高YOLOv3网络对图片特征的利用能力,利用可切换空洞卷积替代特征提取网络中的前四个3×3卷积,增加了卷积的感受野.然后为提升小物体检测精度,改进FPN结构,从YOLOv3特征提取网络中第二次下采样输出的特征图建立104×104作为第四个尺度预测.通过在高铁异物检测数据集上的实验表明,改进后的YOLOv3高铁异物检测网络在检测速度稍降的情况下,平均检测精度达到79.1%,比原网络增加4.3%
随着当前互联网技术的快速发展,网络规模和复杂度不断提高,由于流量矩阵对于网络管理、流量工程、异常检测等都具有重要意义,因此准确测量流量矩阵对于计算机网络而言极其重要.当前针对流量矩阵的测量机制主要可以分为直接测量法和估计推断法,其中估计方法又包括简单统计反演法、附加链路测量信息法以及测量反演结合法.现有测量机制在准确性和测量耗费方面存在较多问题,直接测量的方法虽然可以保证准确性,但网络规模的扩张及网络结构的日趋复杂化使其在实现上存在困难,而流量矩阵推断问题在线性求解上固有的高度病态特性又使得估计推断法时常
无线传感器网络(WSN)能够利用传感器节点快速准确地获取物理世界的信息从而作为物联网的感知层在监控领域得到了广泛的应用,而能量利用率是能量受限无线传感器网络的一个关键属性,直接影响网络的生命周期.经典的分层路由LEACH(及其变种)算法是无线传感器网络中最常见的节能路由协议.该文提出了一种改进的LEACH算法,由sink节点集中计算并选择剩余能量较高的节点作为簇头并根据距离计算最优簇边界进行分簇,将网络划分为多个簇,然后利用改进蚁群优化(ACO)算法实现簇头节点到sink节点的多跳通信.簇内节点将感知数据
目前的软件复用技术主要围绕软件代码的复用进行研究.而随着开源项目的增多,基于待开发项目的需求文档分析,实现项目级的复用就显得非常有价值.当开发人员获取项目的软件需求后,通常需要对其分析并构建解决方案,然后进行设计与实施.如果能根据项目的软件需求找到相似的历史项目进行复用,可以大大节省项目设计与实施时间.因此,在现有的项目级复用研究基础上,该文提出一种基于需求分析的项目级复用技术PR-REQ.该方法首先分析历史开源项目,给出了开源项目的领域信息提取算法,代码的功能操作序列提取算法以及数据模型信息的提取算法;
口服液压盖过程,会出现压盖不良等情况,瓶盖可能会出现划痕、刮花、表面卷曲、压盖破损等缺陷,为保证食品药品安全必须在出厂前进行检测.在基于深度学习的口服液瓶压盖缺陷检测的研究过程中,使用传统卷积神经网络对口服液压盖缺陷数据集进行训练,需要进行人工标注,效率较低.为有效解决上述问题,设计出一种无监督学习的深度卷积去噪自编码器网络模型用于口服液瓶压盖质量检测,并使用结构相似性SSIM作为损失函数.针对口服液压盖质量图像进行预处理,建立合格产品图像数据集,然后构建一种以卷积神经网络为基础,结合多层感知器的去噪自编
针对传统儿童科普教育存在的沉浸感薄弱、知识传输方式单一的问题,设计基于多人网络虚拟现实(VR)技术的儿童科普系统.系统的设计采用模块化的构建方式,主要分为网络联机模块和虚拟现实科普教育业务控制模块.在网络联机模块中,建立起服务器,教师机,学生机之间的信息通信,实现多人信息的加载和多人空间位置的实时同步.虚拟现实科普教育业务控制模块主要包括场景加载模块、知识讲解模块、VR交互模块以及答题模块.系统运行时教师通过虚拟现实交互面板发出指令,控制场景的加载,把握整体教学进度,并与学生的虚拟角色答题互动.学生通过与