论文部分内容阅读
多波束声纳数据可以被处理以获得水下声纳图像。支持向量机(SVM)和卷积神经网络(CNN)都是传统的目标分类和检测方法。关于海底含油沉积物特征识别这一问题,本文分别设计了支持向量机和卷积神经网络算法,对水下声纳图像进行目标特征的提取识别。经过两种方法试验的对比,在同一海域提取样本的情况下,支持向量机在识别含油沉积物的精度和速度上优于卷积神经网络。