坎迪定理的有趣拓广

来源 :中学数学杂志 | 被引量 : 0次 | 上传用户:song656334704
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
《坎迪定理的等价命题》[1]给出了平面几何中闻名数坛的蝴蝶定理的推广命题——坎迪定理的一个等价命题.认真研读,颇受启示.蝴蝶定理是初等几何的著名问题之一,是一颗璀璨夺目,熠熠闪烁的明珠.它像一只展翅腾飞的蝴蝶,以其美丽灵动的舞姿,吸引了众人的眼球,令人遐想,“为伊消得人憔悴”.数学家、数学爱好者纷纷参与,围绕其探究的兴趣十分浓厚,诸多巧证、简证、推广屡见不鲜,坎迪(A.Kandy)定理的问世便是例证.受文[1]启发,本文将给出坎迪定理的几个有趣拓广,供读者参考. The Equivalent Proposition of Candi’s Theorem [1] gives an equivalent proposition of the Candid Theorem, a generalization proposition of the famous butterfly in plane geometry, which has been deeply studied and revelatory. The butterfly theorem is elementary geometry Is one of the famous issues, is a bright, shining pearl .It like a butterfly soaring take off, with its beautiful and smart dance, attracting people’s attention, it is reverie, Haggard. "Mathematicians, math enthusiasts have been involved, interest in exploring around them is very strong, a lot of Qiao Zheng, Jian Zheng, promotion is common, the advent of A. Kandy theorem is an example. Inspired, this article will give some interesting additions to Candid’s theorem for readers’ reference.
其他文献
This paper describes a new approach for the determination of amitriptyline in wastewater by ionic liquid based immersed droplet microextraction (IL-IDME) prior
Vidangadi churna is a popular Ayurvedic formulation described in the chapter Krimicikitsa of the Ayurvedic literature Cakradatta for the treatment of Krimiroga.
The purpose of this study was to investigate the hydrolyzation of aspirin during the process of dissolution testing for aspirin delayed-release tablets. Hydroly
Liquid chromatography (LC) is considered by many as a mature technique. Nonetheless, LC technology continues to evolve driven by the need for high-throughput an
A rapid and simple high performance liquid chromatography (HPLC) mcthod wiih a UV detection (241 nm) was developed and validated for estimation of eplerenone fr
简要介绍中海石油化学股份有限公司合成氨装置曾发生过几次因为NH3与CO2反应生成甲铵引起的管道堵塞,对出现的问题进行了分析和探讨,并提出了改造措施。
研究通过开放式问卷调查,统计并分析了公众对及其颁布时间和生效时间的知晓情况、关注程度、对与自己相关度的认识、关键内容的知晓情况、对解决问题的预期、对其他国家颁布
《数学课程标准》强调数学教学应从学生实际出发,经历“问题情境——建立模型——解释与应用、拓展”的基本过程.[1]著名特级教师孙朝仁关于情境创设的论述:好课之好,好在情
<正>缘起浙教版七年级上2.3有理数的乘法(1)这一课在两个班的不同演绎带来的不同效果让笔者备受启发.下面把两个班在进行有理数乘法中异号两数相乘及同负两数相乘的法则教学