论文部分内容阅读
(武警广州指挥学院 广东广州 510440)
摘要:《数学分析》课程对于数学类、计算机类、信息类等专业的重要性是众所周知的,但是由于该门课程的理论性较强,使得教学效率难以提高,科学的教学方式变得十分重要。本文探讨在《数学分析》教学中融入数学建模思想的途径与方法,对该门课程的教学效率的提高提供参考。
关键词:数学建模;数学思维;数学分析;渗透
《数学分析》课程是数学类专业、计算机等专业的必修课程,也是学习“概率论与数理统计”、“微分方程”、“泛函分析”等课程的基础。数学分析学习的好坏将直接影响到后期其他课程的学习,是深层次探讨数学的必备知识。另外,数学分析对于培养学生的数学思维、逻辑思维以及分析问题、解决问题的能力均有很大好处,尤其是在发现、探讨、解决问题等方面的训练,很好地培养了学生的数学学习能力。综上,“数学分析”的教学方式变得十分重要,且教学质量的好坏将与学生数学素质的提高直接挂钩,本文针对将数学建模思想应用于数学分析教学中的有效性进行分析。
1 《数学分析》课程中应用数学建模思想的重要性
数学建模思想是指在解决实际问题时,利用数学思维建立恰当的模型,将问题定量化,使得一般问题变成数学问题,解决的结果也采用数学语言阐述。建模的过程需要利用数学几何、方程、公式、函数等数学工具将实际的问题简单化和抽象化,使其满足原有的内在意义的同时,满足数学思维的要求[1]。学生通过数学建模、解决实际问题的过程,领悟到数学的应用广泛性以及数学对客观世界的深刻描述。
《数学分析》课程在传统的教学中,对于一些概念、定理及定义的描述过于强调逻辑思维及数学语言的描述,常常令人感到十分枯乏,但究其这些定义、概念、定理的来源,其实便是客观事物的抽象化而形成。所以,应用数学建模的思想,将这些抽象化的数学定理、原理、概念等再变成数学问题,便可以让《数学分析》课程的教学更加简单、明了、生动,学习的学习激情也会得到相应的提高。因此,提高数学建模思想在《数学分析》课程中的应用,将会对提高《数学分析》的教学效率具有十分重要的意义,值得广大教学研究者深入探讨其中的应用方法。
2 数学建模思想在《数学分析》课程中的渗透方法探究
将《数学分析》课程中的较多内容当作数学建模的模型或者需要解决的问题,例如一些不规则图形的面积求解、微积分、重积分等数学公式。那么,数学建模的全过程是教学过程中的重要部分,必不可少,让学生全面了解数学问题的根源,采用数学方法循序渐进地分析,最后解出答案,让学生通过整个过程来掌握建模思想解决问题的方法,充分应用这种思维方式,从而使得学习兴趣更加浓厚,数学的分析与应用能力也得到较好的提高。
2.1 在定义、概念等理论教学中渗透数学建模思想
单纯的定义、概念等理论内容的教学是数学类专业学生感觉最枯燥、乏味的学习环节,而应用数学建模的思想后,使这些定义、概念保留了原来的数学意义,而且得到量化,改变了学生学习这些理论的方式,领悟也会更加深刻。例如极限、微分、函数等概念的学习,利用其中存在的数量关系,建立合适的数学模型,再加以解决和验证,从而理解更为透彻。因此,在对《数学分析》课程中的部分重要概念的教学中,教学者需要对其中包含的数学思想经过精心的设计,使得知识的传授过程中含有丰富的数学方法、思想,让学生能够充分理解这些概念的意义,了解其中的现实意义,掌握其中本来的物理现象。比如教师在传授定积分的概念时,其抽象化让学生难以接受。但是,这一概念中其实包含很多具体的原型结构,旋转体体积与曲边梯形的面积便是其中比较显著的两个数学原型,教学者可以借助其中的某一原型作为教学模型,利用“不变代变”的思想,将其通过一系列的物理方式细分、组合、取值,最后以其极限值来定义结果[2]。这样的教学方式,让一些抽象化、难以理解的概念变成了一系列的数学符号,教学课程变得非常有趣、生动,学生对于这些概念的理解会更加深入,教学效果也会大幅提高。
2.2 在定理、结论教学中渗透数学建模思想
与定义、概念等内容相似的定理、结论等抽象化数学理论也是教学中的一大难点,那么,要采取何种方式提高这部分内容的教学效率成为教学上必须解决的问题。在定理的验证教学中,可将其可能得到的结论作为数学模型,将定理中包含的条件看作该模型的假设条件,再根据预设的情景引导学生总结定理中的结论,使得相关的数学模型变得完善。如此,在教学中渗透数学建模的思想,保证了教学效果,培养了学生发现、探索与创造的精神,使得学生在数学意识及数学创新能力的提高变得容易[3]。由于教学环境与教学方式的影响,许多学生难以理解数学知识的重要性,只是為了考试、为了就业必须去学习数学知识,而且必须要学好数学知识,但是至于数学知识在生活中的重要應用方面,难以发现,特别是很多数学定理与结论之类的理论,学生难以感受到其中的效用。因此,教学者还需要根据这些结论、定理的意义适当增添一些数学模型,以此来提高学生的学习兴趣。
2.3 在作业布置中渗透数学建模思想
学生完成作业的过程,不仅是对新学知识进行巩固的过程,更是学生独立思考,发现问题、解决问题的过程,是提高学生学习思维的一个重要环节。学生完成作业的情况是对学生学习结果的初步反应,教师在作业的布置上,具有较高的针对性,因此学生可以借助于课堂上所学到的知识来完成作业,使得对知识的理解与记忆均得到不同程度的加深,对自身智力及潜力的发挥更加充分。在作业的布置上,教学者应该意识到《数学分析》的理论特性,让学生在实践中加强理论的应用,从而达到巩固、理解等目的。
2.4 数学考核中渗透数学建模思想
传统的《数学分析》课程考核中,仅仅对学生的解题水平做出了考验,因为在考试试卷的设计上,多数引用教材中的习题或例题,对学生应用数学的能力没有做出相应的考核效果。因此,应对《数学分析》课程的考核方式进行改进,可将考核内容分成两种,一种是理论的闭卷考试,另一种是实践应用能力或建模能力。让学生通过考试过程来了解自己的学习情况,使得理论知识的应用及数学建模思想均得到了科学考察。
3 教学实践中渗透的数学建模思想
在《数学分析》的教学中,具体应如何应用数学建模思想,是将数学建模思想融入教学的关键。使得教学内容中既有理论知识,也有实践应用,还对学生的学习兴趣具有较大的提高,且不需要占用过多的教学时间讲解数学建模的内容。想要做到数学建模的科学性,必须在根据教学内容及实际教学情况反复演练,选择其中最典型且简单的数学案例,根据数学建模思想中提出问题、探讨问题、理论应用及实践应用几个核心步骤,在《数学分析》课程的教学中充分渗透数学建模思想[4]。
4 结束语
在《数学分析》课程的教学中渗透数学建模思想,除了以上例举的几种外,还有课后反思、体验发现等环节中也可应用数学建模思想。总之,在《数学分析》中渗透数学建模思想,是为了提高学生的学习激情,增添教学活跃度,使得学生对于一些理论性较强的数学分析问题的理解更加深入,教学效果也得到更好的提高。
参考文献:
[1]张美玲,赵有益,薛自学. 大学数学教学中数学建模思想的渗透[J]. 赤峰学院学报(自然科学版),2017,(04):207-208.
[2]张四保,宋爱丽. 融数学建模思想于数学分析教学的探讨[J]. 重庆工商大学学报(自然科学版),2015,(09):98-101.
[3]牛英春. 数学建模思想在《数学分析》教学中的应用[J]. 开封教育学院学报,2015,(06):89-90.
[4]刘建国. 数学建模思想融入《数学分析》教学的研究与实践[J]. 怀化学院学报,2014,(11):81-83.
摘要:《数学分析》课程对于数学类、计算机类、信息类等专业的重要性是众所周知的,但是由于该门课程的理论性较强,使得教学效率难以提高,科学的教学方式变得十分重要。本文探讨在《数学分析》教学中融入数学建模思想的途径与方法,对该门课程的教学效率的提高提供参考。
关键词:数学建模;数学思维;数学分析;渗透
《数学分析》课程是数学类专业、计算机等专业的必修课程,也是学习“概率论与数理统计”、“微分方程”、“泛函分析”等课程的基础。数学分析学习的好坏将直接影响到后期其他课程的学习,是深层次探讨数学的必备知识。另外,数学分析对于培养学生的数学思维、逻辑思维以及分析问题、解决问题的能力均有很大好处,尤其是在发现、探讨、解决问题等方面的训练,很好地培养了学生的数学学习能力。综上,“数学分析”的教学方式变得十分重要,且教学质量的好坏将与学生数学素质的提高直接挂钩,本文针对将数学建模思想应用于数学分析教学中的有效性进行分析。
1 《数学分析》课程中应用数学建模思想的重要性
数学建模思想是指在解决实际问题时,利用数学思维建立恰当的模型,将问题定量化,使得一般问题变成数学问题,解决的结果也采用数学语言阐述。建模的过程需要利用数学几何、方程、公式、函数等数学工具将实际的问题简单化和抽象化,使其满足原有的内在意义的同时,满足数学思维的要求[1]。学生通过数学建模、解决实际问题的过程,领悟到数学的应用广泛性以及数学对客观世界的深刻描述。
《数学分析》课程在传统的教学中,对于一些概念、定理及定义的描述过于强调逻辑思维及数学语言的描述,常常令人感到十分枯乏,但究其这些定义、概念、定理的来源,其实便是客观事物的抽象化而形成。所以,应用数学建模的思想,将这些抽象化的数学定理、原理、概念等再变成数学问题,便可以让《数学分析》课程的教学更加简单、明了、生动,学习的学习激情也会得到相应的提高。因此,提高数学建模思想在《数学分析》课程中的应用,将会对提高《数学分析》的教学效率具有十分重要的意义,值得广大教学研究者深入探讨其中的应用方法。
2 数学建模思想在《数学分析》课程中的渗透方法探究
将《数学分析》课程中的较多内容当作数学建模的模型或者需要解决的问题,例如一些不规则图形的面积求解、微积分、重积分等数学公式。那么,数学建模的全过程是教学过程中的重要部分,必不可少,让学生全面了解数学问题的根源,采用数学方法循序渐进地分析,最后解出答案,让学生通过整个过程来掌握建模思想解决问题的方法,充分应用这种思维方式,从而使得学习兴趣更加浓厚,数学的分析与应用能力也得到较好的提高。
2.1 在定义、概念等理论教学中渗透数学建模思想
单纯的定义、概念等理论内容的教学是数学类专业学生感觉最枯燥、乏味的学习环节,而应用数学建模的思想后,使这些定义、概念保留了原来的数学意义,而且得到量化,改变了学生学习这些理论的方式,领悟也会更加深刻。例如极限、微分、函数等概念的学习,利用其中存在的数量关系,建立合适的数学模型,再加以解决和验证,从而理解更为透彻。因此,在对《数学分析》课程中的部分重要概念的教学中,教学者需要对其中包含的数学思想经过精心的设计,使得知识的传授过程中含有丰富的数学方法、思想,让学生能够充分理解这些概念的意义,了解其中的现实意义,掌握其中本来的物理现象。比如教师在传授定积分的概念时,其抽象化让学生难以接受。但是,这一概念中其实包含很多具体的原型结构,旋转体体积与曲边梯形的面积便是其中比较显著的两个数学原型,教学者可以借助其中的某一原型作为教学模型,利用“不变代变”的思想,将其通过一系列的物理方式细分、组合、取值,最后以其极限值来定义结果[2]。这样的教学方式,让一些抽象化、难以理解的概念变成了一系列的数学符号,教学课程变得非常有趣、生动,学生对于这些概念的理解会更加深入,教学效果也会大幅提高。
2.2 在定理、结论教学中渗透数学建模思想
与定义、概念等内容相似的定理、结论等抽象化数学理论也是教学中的一大难点,那么,要采取何种方式提高这部分内容的教学效率成为教学上必须解决的问题。在定理的验证教学中,可将其可能得到的结论作为数学模型,将定理中包含的条件看作该模型的假设条件,再根据预设的情景引导学生总结定理中的结论,使得相关的数学模型变得完善。如此,在教学中渗透数学建模的思想,保证了教学效果,培养了学生发现、探索与创造的精神,使得学生在数学意识及数学创新能力的提高变得容易[3]。由于教学环境与教学方式的影响,许多学生难以理解数学知识的重要性,只是為了考试、为了就业必须去学习数学知识,而且必须要学好数学知识,但是至于数学知识在生活中的重要應用方面,难以发现,特别是很多数学定理与结论之类的理论,学生难以感受到其中的效用。因此,教学者还需要根据这些结论、定理的意义适当增添一些数学模型,以此来提高学生的学习兴趣。
2.3 在作业布置中渗透数学建模思想
学生完成作业的过程,不仅是对新学知识进行巩固的过程,更是学生独立思考,发现问题、解决问题的过程,是提高学生学习思维的一个重要环节。学生完成作业的情况是对学生学习结果的初步反应,教师在作业的布置上,具有较高的针对性,因此学生可以借助于课堂上所学到的知识来完成作业,使得对知识的理解与记忆均得到不同程度的加深,对自身智力及潜力的发挥更加充分。在作业的布置上,教学者应该意识到《数学分析》的理论特性,让学生在实践中加强理论的应用,从而达到巩固、理解等目的。
2.4 数学考核中渗透数学建模思想
传统的《数学分析》课程考核中,仅仅对学生的解题水平做出了考验,因为在考试试卷的设计上,多数引用教材中的习题或例题,对学生应用数学的能力没有做出相应的考核效果。因此,应对《数学分析》课程的考核方式进行改进,可将考核内容分成两种,一种是理论的闭卷考试,另一种是实践应用能力或建模能力。让学生通过考试过程来了解自己的学习情况,使得理论知识的应用及数学建模思想均得到了科学考察。
3 教学实践中渗透的数学建模思想
在《数学分析》的教学中,具体应如何应用数学建模思想,是将数学建模思想融入教学的关键。使得教学内容中既有理论知识,也有实践应用,还对学生的学习兴趣具有较大的提高,且不需要占用过多的教学时间讲解数学建模的内容。想要做到数学建模的科学性,必须在根据教学内容及实际教学情况反复演练,选择其中最典型且简单的数学案例,根据数学建模思想中提出问题、探讨问题、理论应用及实践应用几个核心步骤,在《数学分析》课程的教学中充分渗透数学建模思想[4]。
4 结束语
在《数学分析》课程的教学中渗透数学建模思想,除了以上例举的几种外,还有课后反思、体验发现等环节中也可应用数学建模思想。总之,在《数学分析》中渗透数学建模思想,是为了提高学生的学习激情,增添教学活跃度,使得学生对于一些理论性较强的数学分析问题的理解更加深入,教学效果也得到更好的提高。
参考文献:
[1]张美玲,赵有益,薛自学. 大学数学教学中数学建模思想的渗透[J]. 赤峰学院学报(自然科学版),2017,(04):207-208.
[2]张四保,宋爱丽. 融数学建模思想于数学分析教学的探讨[J]. 重庆工商大学学报(自然科学版),2015,(09):98-101.
[3]牛英春. 数学建模思想在《数学分析》教学中的应用[J]. 开封教育学院学报,2015,(06):89-90.
[4]刘建国. 数学建模思想融入《数学分析》教学的研究与实践[J]. 怀化学院学报,2014,(11):81-83.